A Survey of Statistical Methods in Aeronautical Ground Testing

Drew Landman, Ph.D., P.E.
dlandman@odu.edu
Professor
Department of Mechanical and Aerospace Engineering
Old Dominion University
Norfolk Virginia, USA

Peter A. Parker, Ph.D., P.E.
peter.a.parker@nasa.gov
Lead, Advanced Measurement Systems
National Aeronautics and Space Administration
Hampton, Virginia, USA

April 9-11, 2019
DATAWorks 2019
Springfield, VA
Outline

• Background

• Survey of statistical methods in ground testing
 – Wind tunnel testing
 – Wind tunnel characterization
 – Measurement system calibration

• Future Opportunities and Challenges
 – Requirements and training
 – Overcoming cultural inertia
Aerospace Ground Testing

- Refers primarily to wind tunnel testing over a broad range of flight conditions
 - Fight Vehicles: Micro-UAV’s to hypersonic missiles
 - Propulsion: electric propulsion, turbofans to rocket motors

- Importance of Wind Tunnel Experiments
 - Characterize and optimize aerodynamic performance of flight vehicles
 - Validate computational simulations

- A controlled, low-noise environment in comparison to flight test
 - Requires facility calibration and data quality assurance programs
 - Demands highly precise instrumentation design and calibration
Some History

• Productive aerospace ground test facilities were developed at about the same time as Sir Ronald Fisher’s pioneering work in DOE (VDT shown)

• Pratt and Whitney, engine nozzle testing in the 1960’s (Motycka and Snowronek, 1966)

• Introduction of Statistical Engineering to ground test at NASA Langley started in the late 1990’s (Deloach and Hempsch)
Introduction

• Most of the statistical concepts in this talk are not new
 – However, their application to aero ground testing is relatively new

• Historically, academic training of engineers lacked relevant, applicable, courses in statistics and experiment design
 – Most engineers were unaware of industrial, applied statistics

• Engineers are (were) generally trained to ”fear” uncertainty
 – Uncertainty is a problem, a nuisance to be avoided

• Over last 15 years, there are better educational resources, accessible software, and an increasing appreciation for the role of statistical methods in aeronautical research

Statistical methods enable efficient, insightful, data-driven decisions in the presence of uncertainty
Initiatives and Inertia

- AIAA Ground Testing Technical Committee Statistically Defensible Test Methods Focus Group
 - A forum to raise awareness of methods and applications
 - Promote broader application
 - Demonstrate benefits and impact of statistical methods

- Even though training is more accessible and methods are becoming well-known, and well-accepted, application of statistical methods is still not commonplace – it’s not the way we routinely do business
 - Somewhat driven by the notion that our test facilities are so precise, we don’t require specialized statistical methods

- In the research community, there continues to be a pull to defend requested data volume (i.e. test time) to meet research objectives
 - Statistical methods empower data sufficiency arguments
 - Scientific approach to define test size, rather than heuristic
Predominant Statistical Methods

- Design of Experiments (Physical and Computational)
- Response Surface Methodology (Physical and Computational)
- Statistical Process Monitoring, Statistical Quality Control
- Modeling, Regression, Nonparametric
- Uncertainty analysis and propagation
- Simulation, such as Monte Carlo methods

Methods for rigorously understanding factor-response relationships
A Few “Radical” Statistical Concepts

• Experiment Design
 – Starts with precise questions, risks, and consequences
 – Defining an analysis plan before the data are collected
 – Evaluating experiment sufficiency before data are collected

• Factorial Experiments
 – Changing more than one factor at a time, simultaneously
 – Maximizing information acquisition efficiency
 – Providing insights on interactions

• Modeling with Quantified Inference
 – Estimating and isolating random variability
 – More than plotting, subjectively discerning subtle differences

Techniques to efficiently and sequentially learn
Wind Tunnel Testing

Measurement System Characterization

Education and Training Milestones

• Old Dominion University - Center for Experimental Aeronautics
 – Established in 2000, with statistical methods a core component
 – Graduate level, 2-course sequence
 • Design of Experiments and Response Surface Methodology
 – DOE is now a M.S. core course in Mechanical and Aerospace Eng.

• AIAA Short-Courses - Concepts in the Modern Design of Experiments
 – Dick DeLoach, NASA LaRC, founder (now retired)
 – Taught at many conferences, since about 2003
 – Raised awareness within the AIAA community
 – Drew Landman to teach again in 2020
Future Challenges and Opportunities

- Awareness remains a challenge, methods and benefits
 - DWWDLT – Do what we did last time…best efforts
 - Need to encourage leadership to expect more rigorous testing
 - Educating our “new” experimental aerodynamicists
 - Use case study demonstrations of benefits

- Leveraging partnerships
 - At the national level: Academia, Industry, and Government
 - Statistical Engineering Interagency Agreement between NASA and the Director, Operational Test and Evaluation, with Office of the Secretary of Defense (2014)
 - At the local level
 - Include statistical engineering experts in test campaigns
 - Establish go-to experts in statistical engineering for day to day test and analysis needs
 - Successful DOD operational test approach
Challenges in Wind Tunnel Testing

• Restricted randomization
 – Many wind tunnel tests involve Hard-to-Change factors
 • Flow conditions
 • Model configuration changes

• Subspace inference strategies
 – Experiment designs may not be practical over entire domain
 – Subspace division is a logical choice
 • Perceived problems at subspace boundaries

Mars Parachute Testing, NASA LaRC TDT

Thanks to our Contributors

Matt Rhode, Ray Rhew, and Eric Walker
NASA Langley Research Center

Mike Hemsch
NASA Langley Research Center, retired

Colin Britcher
Old Dominion University

Greg Hutto
US Air Force, AFMC 96th Test Wing

Jim Simpson
JK Analytics