MODELING AND SIMULATION, UNCERTAINTY QUANTIFICATION AND THE INTEGRATION OF DIVERSE INFORMATION SOURCES

C. Shane Reese
DoD/NASA Statistical Engineering Leadership Webinar, May 2017

1Department of Statistics
Brigham Young University
BACKGROUND
CURRENT COLLABORATIONS

Los Alamos National Laboratory
EST. 1943

NASA

P&G
“Given inevitable flaws and uncertainties, how should computational results be viewed by those who wish to act on them? The appropriate level of confidence in the results must stem from an understanding of a model’s limitations and the uncertainties inherent in its predictions.”

— National Academy Report, 2012
· Test and evaluation of modern complex systems
• Test and evaluation of modern complex systems
 • Diverse information sources (computer, physical, expert opinion)
· Test and evaluation of modern complex systems
 · Diverse information sources (computer, physical, expert opinion)
 · Diverse information types (functional, continuous, discrete)
· Test and evaluation of modern complex systems
 · Diverse information sources (computer, physical, expert opinion)
 · Diverse information types (functional, continuous, discrete)
 · Complexity of systems increases with new variants, life extension programs, etc.
· Test and evaluation of modern complex systems
 · Diverse information sources (computer, physical, expert opinion)
 · Diverse information types (functional, continuous, discrete)
 · Complexity of systems increases with new variants, life extension programs, etc.

· Example: Stockpile stewardship
• Test and evaluation of modern complex systems
 • Diverse information sources (computer, physical, expert opinion)
 • Diverse information types (functional, continuous, discrete)
 • Complexity of systems increases with new variants, life extension programs, etc.

• Example: Stockpile stewardship

• Modern testing: “do more with less”
Test and evaluation of modern complex systems

- Diverse information sources (computer, physical, expert opinion)
- Diverse information types (functional, continuous, discrete)
- Complexity of systems increases with new variants, life extension programs, etc.

Example: Stockpile stewardship

Modern testing: “do more with less”

A pressing issue: most statistical, mathematical, and engineering programs do not provide sufficient training to tackle these difficult issues.
- Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
- Engineering judgement

- Commonly encountered data types
 - Continuous
 - Discrete
 - Functional
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
· Commonly encountered data sources (not meant to be exhaustive!)
 · Developmental testing (lab testing)
 · Operational testing (field testing)
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
- Engineering judgement
Commonly encountered data sources (not meant to be exhaustive!)
 - Developmental testing (lab testing)
 - Operational testing (field testing)
 - Modeling and simulation (computer experiments)
 - Engineering judgement

Commonly encountered data types
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
- Engineering judgement

Commonly encountered data types

- Continuous
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
- Engineering judgement

Commonly encountered data types

- Continuous
- Discrete
Commonly encountered data sources (not meant to be exhaustive!)

- Developmental testing (lab testing)
- Operational testing (field testing)
- Modeling and simulation (computer experiments)
- Engineering judgement

Commonly encountered data types

- Continuous
- Discrete
- Functional
DEFINITION OF TERMS
Modeling and Simulation
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
· Modeling and Simulation
 · Computer Experiments
 · Examples: CFD, FEA, etc.
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.
- Uncertainty Quantification
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.
- Uncertainty Quantification
 - Model Validation
· Modeling and Simulation
 · Computer Experiments
 · Examples: CFD, FEA, etc.

· Uncertainty Quantification
 · Model Validation
 · Model Calibration
· Modeling and Simulation
 · Computer Experiments
 · Examples: CFD, FEA, etc.

· Uncertainty Quantification
 · Model Validation
 · Model Calibration
 · Design of Experiments
"A ROSE BY ANY OTHER NAME ..." (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.

- Uncertainty Quantification
 - Model Validation
 - Model Calibration
 - Design of Experiments
 - Sensitivity Analysis
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.

- Uncertainty Quantification
 - Model Validation
 - Model Calibration
 - Design of Experiments
 - Sensitivity Analysis
 - Propagation of Uncertainty
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.

- Uncertainty Quantification
 - Model Validation
 - Model Calibration
 - Design of Experiments
 - Sensitivity Analysis
 - Propagation of Uncertainty

- Integrated Analysis of Physical and Computer Experiments
“A ROSE BY ANY OTHER NAME ...” (SHAKESPEARE)

- Modeling and Simulation
 - Computer Experiments
 - Examples: CFD, FEA, etc.

- Uncertainty Quantification
 - Model Validation
 - Model Calibration
 - Design of Experiments
 - Sensitivity Analysis
 - Propagation of Uncertainty

- Integrated Analysis of Physical and Computer Experiments
 - Data Assimilation
Modeling and Simulation
- Computer Experiments
- Examples: CFD, FEA, etc.

Uncertainty Quantification
- Model Validation
- Model Calibration
- Design of Experiments
- Sensitivity Analysis
- Propagation of Uncertainty

Integrated Analysis of Physical and Computer Experiments
- Data Assimilation
- Resource Allocation Decisions
MODELING AND SIMULATION (M&S)
· Computer experiments examples
• Computer experiments examples
 • Computational Fluid Dynamics (CFD)
Computer experiments examples
 - Computational Fluid Dynamics (CFD)
 - NW Physics codes
· Computer experiments examples
 · Computational Fluid Dynamics (CFD)
 · NW Physics codes
 · Finite Element Analysis (FEA, FEM)
MODELING AND SIMULATION

- Computer experiments examples
 - Computational Fluid Dynamics (CFD)
 - NW Physics codes
 - Finite Element Analysis (FEA, FEM)
 - Biomechanics

Often functional output rather than \(y_c(x) \) vs. \(y_c(t; x(t)) \).

Ultimate codification and integration of expert opinion, physical theory, and computer model “tuning” parameters.

May be less expensive than field data.

Tradeoff: inherent bias or discrepancy.
MODELING AND SIMULATION

- Computer experiments examples
 - Computational Fluid Dynamics (CFD)
 - NW Physics codes
 - Finite Element Analysis (FEA, FEM)
 - Biomechanics

- Often functional output rather than \(y_c(x) \) vs. \(y_c(t, x(t)) \)
· Computer experiments examples
 · Computational Fluid Dynamics (CFD)
 · NW Physics codes
 · Finite Element Analysis (FEA, FEM)
 · Biomechanics

· Often functional output rather than \(y_c(x) \) vs. \(y_c(t, x(t)) \)

· Ultimate codification and integration of expert opinion, physical theory, and computer model “tuning” parameters \(\theta \).
MODELING AND SIMULATION

- Computer experiments examples
 - Computational Fluid Dynamics (CFD)
 - NW Physics codes
 - Finite Element Analysis (FEA, FEM)
 - Biomechanics
- Often functional output rather than \(y_c(x) \) vs. \(y_c(t, x(t)) \)
- Ultimate codification and integration of expert opinion, physical theory, and computer model “tuning” parameters \(\theta \).
- May be less expensive than field data.
Computer experiments examples
- Computational Fluid Dynamics (CFD)
- NW Physics codes
- Finite Element Analysis (FEA, FEM)
- Biomechanics

- Often functional output rather than \(y_c(x) \) vs. \(y_c(t, x(t)) \)
- Ultimate codification and integration of expert opinion, physical theory, and computer model “tuning” parameters \(\theta \).
- May be less expensive than field data.
- Tradeoff: inherent bias or discrepancy.
WHY COMPUTER EXPERIMENTS?

· Benefits
 · Resource savings
 1. Financial
 · Potential for exploration of expanded “settings” (covariates)
· Disadvantages
WHY COMPUTER EXPERIMENTS?

- **Benefits**
 - Resource savings
 1. Financial
 2. Time
 - Potential for exploration of expanded “settings” (covariates)

- **Disadvantages**
WHY COMPUTER EXPERIMENTS?

· Benefits
 · Resource savings
 1. Financial
 2. Time
 3. Testing resources
 · Potential for exploration of expanded “settings” (covariates)

· Disadvantages
 WHY COMPUTER EXPERIMENTS?

• Benefits
 • Resource savings
 1. Financial
 2. Time
 3. Testing resources
 • Potential for exploration of expanded “settings” (covariates)

• Disadvantages
 • Require different resources
WHY COMPUTER EXPERIMENTS?

· Benefits
 · Resource savings
 1. Financial
 2. Time
 3. Testing resources
 · Potential for exploration of expanded “settings” (covariates)

· Disadvantages
 · Require different resources
 · May be biased (we use the term discrepancy)
Why computer experiments?

- **Benefits**
 - Resource savings
 1. Financial
 2. Time
 3. Testing resources
 - Potential for exploration of expanded “settings” (covariates)

- **Disadvantages**
 - Require *different* resources
 - May be biased (we use the term *discrepancy*)
 - Difficult/impossible to validate without physical data
Treat computer experiments as data!

- x: predictor variables (observed)
- θ: computer model parameters
- $\eta(x, \theta)$: computer model estimate for y given x and θ.
- y: actual outcome at x
- ϵ: statistical error

Assume: $y = \eta(x, \theta) + \epsilon \theta$ unknown.
Bayes’ Rule

\[
\pi(\theta|y) \propto L(y|\theta) \times \pi(\theta)
\]

- Goal is to understand \(\theta \) to “tune” computer model
- Bayesian approach provides very general approach for inference
- Required element: prior pdf for \(\theta \) is required (perhaps noninformative)
- Issue 1: normalizing \(\pi(\theta|y) \) is generally difficult, but rarely necessary
- Issue 2: high dimensional \(\theta \) can lead to computational challenges
UNCERTAINTY QUANTIFICATION
- Field experiments (physical experiments)
 - Traditionally “real” data
 - Measured without bias/discrepancy
 - Univariate, $y(x)$, multivariate, $y(x)$, or functional, $y(t; x)$
 - Hereafter, $y(x)$.
\(y(x) = \zeta(x) + \epsilon(x) \)

- \(x \): known system inputs
- \(y(x) \): experimental data
- \(\zeta(x) \): unobs. system response
- \(\epsilon(x) \): statistical error
\[\zeta(x) = \eta(x, \theta) + \delta(x) \]

- \(\zeta(x) \): unknown calibration inputs
- \(\eta(x, \theta) \): computer model
- \(\delta(x) \): model discrepancy
Discrepancy = 0 \rightarrow \text{Agreement!}

- feedback to modelers
- difference “surface” (data - model)
- 95/5 uncertainty bounds
predicted $\zeta(x)$
- 95/5 uncertainty bounds
- predicted $\zeta(x)$
- unobserved “truth”
- Discrepancy adjusted!
Background
Definition of Terms
Modeling and Simulation (M&S)

Uncertainty Quantification
 Integrated Analysis of Computer and Physical Experiments

Model Validation
Model Calibration
Design of Experiments/Resource Allocation
Sensitivity Analysis
Examples

Summary
Questions and Answers
Does the computer code represent the reality that the code is meant to describe?
· Does the computer code represent the reality that the code is meant to describe?

· Most statistical techniques for model validation assume that field (physical) experiments are the gold standard (no inherent bias/discrepancy).
· Does the computer code represent the reality that the code is meant to describe?

· Most statistical techniques for model validation assume that field (physical) experiments are the gold standard (no inherent bias/discrepancy).

· Only makes sense where physical experiments are possible.
· Does the computer code represent the reality that the code is meant to describe?

· Most statistical techniques for model validation assume that field (physical) experiments are the gold standard (no inherent bias/discrepancy).

· Only makes sense where physical experiments are possible.

· Ambiguous definition: oft discussed, seldom resolved!
Background
Definition of Terms
Modeling and Simulation (M&S)
Uncertainty Quantification
 Integrated Analysis of Computer and Physical Experiments
 Model Validation
Model Calibration
 Design of Experiments/Resource Allocation
 Sensitivity Analysis
Examples
Summary
Questions and Answers
· \(\theta \) (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.
· \(\theta \) (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.

· Requires:
· θ (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.

· Requires:
 1. True input/output relationship
· θ (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.

· Requires:
 1. True input/output relationship
 2. Computer experiment is a biased version of reality.
· θ (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.

· Requires:
 1. True input/output relationship
 2. Computer experiment is a biased version of reality.
 3. Physical experiment is a noisy (statistical error) version of reality.
MODEL CALIBRATION

- \(\theta \) (tuning parameters) at the proper value to promote “agreement” between computer experiments and physical data.

- Requires:
 1. True input/output relationship
 2. Computer experiment is a biased version of reality.
 3. Physical experiment is a noisy (statistical error) version of reality.
 4. Built in to most COTS/publicly available software.
Background
Definition of Terms
Modeling and Simulation (M&S)
Uncertainty Quantification
 Integrated Analysis of Computer and Physical Experiments
 Model Validation
 Model Calibration
Design of Experiments/Resource Allocation
Sensitivity Analysis
Examples
Summary
Questions and Answers
· Standard design tools don’t apply
· Standard design tools don’t apply
· Requires:

Regime switching with T reed Gaussian Processes (Gramacy & Lee, 2009)
Modern approaches based on “adaptive” design procedures that not only make choices of inputs \((x)\), but choose between computer experimental runs and physical experimental runs.

Rich literature on this topic.
• Standard design tools don’t apply
• Requires:
 1. Usually space filling designs
· Standard design tools don’t apply
· Requires:
 1. Usually space filling designs
 2. Initial small-scale starter design
· Standard design tools don’t apply
· Requires:
 1. Usually space filling designs
 2. Initial small-scale starter design
· Regime switching with Treed Gaussian Processes (Gramacy & Lee, 2009)
∙ Standard design tools don’t apply
∙ Requires:
 1. Usually space filling designs
 2. Initial small-scale starter design
∙ Regime switching with Treed Gaussian Processes (Gramacy & Lee, 2009)
∙ Modern approaches based on “adaptive” design procedures that not only make choices of inputs (x), but choose between computer experimental runs and physical experimental runs.
- Standard design tools don’t apply
- Requires:
 1. Usually space filling designs
 2. Initial small-scale starter design
- Regime switching with Treed Gaussian Processes (Gramacy & Lee, 2009)
- Modern approaches based on “adaptive” design procedures that not only make choices of inputs \((x)\), but choose between computer experimental runs and physical experimental runs.
- Rich literature on this topic.
Background
Definition of Terms
Modeling and Simulation (M&S)

Uncertainty Quantification
 - Integrated Analysis of Computer and Physical Experiments
 - Model Validation
 - Model Calibration
 - Design of Experiments/Resource Allocation

Sensitivity Analysis
Examples
Summary
Questions and Answers
SENSITIVITY ANALYSIS

- Assess the sensitivity of output to individual variables ("main effects") or combinations of variables ("interactions").
- ANOVA-type decomposition gives variability attribution.
- Useful in determination of important variables/combination of variables.
- Active area of research.
- Built in to most COTS/publically available software
EXAMPLE 1: MICROENCAPSULATION FOOD COATING

- Goal: Model uniformity of foot coating application, find “best” computer model.
- Physical Experiment: actual food coating process as use 28 runs of food coating line with different (operational testing) settings of temperature, air pressure, density of coating material, etc.
- Computational Models: 3 different models with different “physics” at each of the exact same settings.
- Unique aspects:
 - Possible to run computer experiments at all physical experiments
 - Multiple teams competing to build more accurate experiment
 - All models perfectly “tuned” (almost never happens!)
EXAMPLE 1 (OUTPUT)

Discrepancy = 0 → Agreement!
- Computer model 3 is best
- δ (data - model)
- Full distribution for each δ

\leftarrow constant $\delta(x) \equiv \delta$
EXAMPLE 2: STOCKPILE STEWARDSHIP

- Goal: Assess safety, security and effectiveness of the stockpile
- Physical Experiments: underground tests (operational-ish), non nuclear tests
 - Operational physical experiments are desired by nobody.
 - Lab tests expensive, only partially representative
- Computer Experiments: complex computer codes
 - Months of CPU time on world’s fastest supercomputers.
 - Specialized computing equipment required.
 - Computational experiments almost as costly as physical experiments.
Example 3: NASA Slosh Estimation

- Goal: Model effect of damping on fluid slosh in booster tanks
- Physical Experiment: Shaker table (lab testing)
 - Operational physical experiments costly.
 - Computational experiments are as costly.
- Computer Experiments: Computational Fluid Dynamics (CFD)
 - Expensive, difficult to obtain
 - Computational experiments are perhaps more costly to run (at least in terms of time)
 - Viewed by some as higher fidelity than physical experiments
Fill Height: 12.6 in
All Wave Heights

← predicted $\zeta(x)$
- 95/5 uncertainty bounds
- Impressive agreement
- unobserved “truth”
- Discrepancy adjusted!
SUMMARY
· Statistical framework for integration of computational (M&S) and physical experiments is feasible.
· Statistical framework for integration of computational (M&S) and physical experiments is feasible.

· Treating computer experiments as “biased” data allows for
· Statistical framework for integration of computational (M&S) and physical experiments is feasible.

· Treating computer experiments as “biased” data allows for
 · Tuning of computer model – feedback to modelers

SUMMARY AND REFLECTIONS
SUMMARY AND REFLECTIONS

- Statistical framework for integration of computational (M&S) and physical experiments is feasible.
- Treating computer experiments as “biased” data allows for
 - Tuning of computer model – feedback to modelers
 - Estimation of regions of unbiasedness and regions of bias
• Statistical framework for integration of computational (M&S) and physical experiments is feasible.

• Treating computer experiments as “biased” data allows for
 • Tuning of computer model – feedback to modelers
 • Estimation of regions of unbiasedness and regions of bias
 • Integration of different sources of information
∙ Statistical framework for integration of computational (M&S) and physical experiments is feasible.
∙ Treating computer experiments as “biased” data allows for
 ∙ Tuning of computer model – feedback to modelers
 ∙ Estimation of regions of unbiasedness and regions of bias
 ∙ Integration of different sources of information
 ∙ Fully quantified uncertainty.
SUMMARY AND REFLECTIONS

- Statistical framework for integration of computational (M&S) and physical experiments is feasible.
- Treating computer experiments as “biased” data allows for:
 - Tuning of computer model – feedback to modelers
 - Estimation of regions of unbiasedness and regions of bias
 - Integration of different sources of information
 - Fully quantified uncertainty.
- Each situation has unique elements that make integrated analysis difficult to create and use COTS solutions.
SUMMARY AND REFLECTIONS

- Statistical framework for integration of computational (M&S) and physical experiments is feasible.
- Treating computer experiments as “biased” data allows for
 - Tuning of computer model – feedback to modelers
 - Estimation of regions of unbiasedness and regions of bias
 - Integration of different sources of information
 - Fully quantified uncertainty.
- Each situation has unique elements that make integrated analysis difficult to create and use COTS solutions.
- Resources are available and research continues to pour out of both statistics and applied math (see below).
REFERENCES

· LANL Gaussian Spatial Process (GaSP) Code:
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based

SmartUQ
- COTS solution
- Fee based
- User-friendly
· LANL Gaussian Spatial Process (GaSP) Code:
 · MATLAB based
 · Examples provides
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
 - Free!

[URL to LANL Gaussian Spatial Process Code]

[URL to SmartUQ]

COTS solution
- Fee based
- User-friendly
· LANL Gaussian Spatial Process (GaSP) Code:
 · MATLAB based
 · Examples provides
 · Not completely user-friendly
 · Free!
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
 - Free!

- SmartUQ
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
 - Free!

- SmartUQ

- COTS solution
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
 - Free!

- SmartUQ
 - COTS solution
 - Fee based
RESOURCES FOR COMPUTATION

- LANL Gaussian Spatial Process (GaSP) Code:
 - MATLAB based
 - Examples provides
 - Not completely user-friendly
 - Free!

- SmartUQ
 - COTS solution
 - Fee based
 - User-friendly
RESOURCES FOR NEW METHODS AND RESEARCH

- Conferences: ASA, SIAM, NIPS
RESOURCES FOR NEW METHODS AND RESEARCH

- Conferences: ASA, SIAM, NIPS
- Journals:

 ![Image of conference and journal covers]