Software Reliability Modeling: Heterogeneous Fault Detection Processes

- Vidhyashree Nagaraju, MS, University of Massachusetts Dartmouth
- Lance Fiondella, PhD, University of Massachusetts Dartmouth
Outline

• Motivation
• Background
• Contribution
• NHPP SRGM with single changepoint
 – Homogeneous and heterogeneous changepoint models
 – Illustrations
• Conclusions and future work
Motivation

• Software reliability growth models (SRGM)
 – Well-established methodology
 – Many based on non-homogeneous Poisson process (NHPP)
 • Expected number of faults if debugging performed indefinitely
 • Failure intensity
 • Mean time to failure (MTTF)
 • Reliability

• SRGMs assume
 – Fault detection rate dependent on software testing time
Background

• During software testing
 – Failure detection affected by many factors
 • Change in testing environment
 • Testing strategy
 • Integration testing
 • Resource allocation

• Impact of factors on the fault detection process – Changepoints
 – Failing to model changepoints may adversely affect system assessment

• Several NHPP SRGM consider changepoint since 1992
 – Consider only homogeneous combinations of failure distribution before and after changepoints
Contribution

• Heterogeneous single changepoint models
 – Applies ECM algorithm to maximize log-likelihood

• Compared with existing homogeneous models
 – Demonstrate heterogeneous changepoint models characterize some data sets better than homogeneous models
NHPP SRGM

• Stochastic process
 – Counts number of events observed as function of time
 – In software reliability,
 • counts number of faults detected by time t

• Counting process characterized by mean value function (MVF)
 – Form of MVF of several SRGM:
 $$ m(t) = a \times F(t) $$
 • a – expected number of faults detected with indefinite testing
 • $F(t)$ - cumulative distribution function (CDF)
NHPP SRGM

- Substituting exponential distribution for $F(t)$
 \[m(t) = a(1 - e^{-bt}) \]
 - b - fault detection rate
 - Also known as Goel-Okumoto (GO) SRGM

- Substituting delayed S-shaped (DSS) distribution for $F(t)$
 \[m(t) = a(1 - (1 + bt)e^{-bt}) \]
 - bte^{-bt} – can characterize delay between time of failure observation and reporting or fault masking
NHPP SRGM with single Changepoint

• $T = \langle t_1, t_2, \ldots, t_n \rangle$ - vector of failure time data with single changepoint

• $F_1(t)$ and $F_2(t)$ - failure distributions before and after τ

• MVF of NHPP SRGM with single changepoint

$$m(t) = \begin{cases} a \times F_1(t), & 0 \leq t \leq \tau \\ a(F_1(\tau) + F_2(t - \tau)), & t > \tau \end{cases}$$
NHPP SRGM w/single Changepoint (2)

- NHPP SRGM with single changepoint can be
 - Homogeneous
 - If \(F_1(t) \) and \(F_2(t) \) follow similar distribution
 - Heterogeneous
 - If \(F_1(t) \) and \(F_2(t) \) follow different distribution

- Changepoint \(\tau \) identified by maximizing likelihood for each value \(\tau \in (2, (n - 1)) \)
Homogenous changepoint models

1. GO-GO SRGM
 - If $F_1(t)$ and $F_2(t)$ follow **exponential** distribution
 \[m(t) = \begin{cases}
 a(1 - e^{-bt}), & 0 \leq t \leq \tau \\
 a \left((1 - e^{-b\tau}) + (1 - e^{-b(t-\tau)}) \right), & t > \tau
 \end{cases} \]

2. DSS-DSS SRGM
 - If $F_1(t)$ and $F_2(t)$ follow **S-shaped** distribution
 \[m(t) = \begin{cases}
 a \left(1 - (1 + bt) e^{-bt} \right), & 0 \leq t \leq \tau \\
 a \left((1 - (1 + b\tau) e^{-b\tau} + (1 + b(t - \tau)) e^{-b(t-\tau)}) \right), & t > \tau
 \end{cases} \]
Heterogenous changepoint models (2)

1. GO-DSS SRGM
 - If $F_1(t)$ and $F_2(t)$ follows exponential and S-shaped distribution respectively

 $$m(t) = \begin{cases}
 a(1 - e^{-bt}), & 0 \leq t \leq \tau \\
 a \left((1 - e^{-b\tau}) + (1 + b(t - \tau))e^{-b(t-\tau)} \right), & t > \tau
 \end{cases}$$

2. DSS-GO SRGM
 - If $F_1(t)$ and $F_2(t)$ follows S-shaped and exponential distribution respectively

 $$m(t) = \begin{cases}
 a(1 - (1 + bt)e^{-bt}), & 0 \leq t \leq \tau \\
 a \left((1 - (1 + b\tau)e^{-b\tau}) + (1 - e^{-b(t-\tau)}) \right), & t > \tau
 \end{cases}$$
Parameter Estimation Method

- Maximum likelihood estimation (MLE) maximizes the likelihood function to identify numerical values of model parameters.

- NHPP failure times data log-likelihood:
 \[LL(\Theta|T) = -m(t_n) + \sum_{i=1}^{n} \log(\lambda(t_i)) \]
 - \(\Theta \) – vector of model parameters
 - \(\lambda(t) := \frac{dm(t)}{dt} \) - instantaneous failure rate at time \(t \)

- ECM algorithm applied to identify MLEs.
Initial parameter estimates selection

- Function of $f(t_i; \Theta)$

\[a^{(0)} = N \]

and

\[\Theta^{(0)} := \sum_{i=1}^{n} \frac{\partial}{\partial \Theta} \log[f(t_i; \Theta)] = 0 \]
Initial parameter estimates selection (2)

- GO SRGM parameters

\[a^{(0)} = n, \quad b^{(0)} = \frac{n}{\sum_{i=1}^{n} t_i} \]

- Similarly, for DSS SRGM

\[b^{(0)} = \frac{2n}{\sum_{i=1}^{n} t_i} \]
Illustrations
GO-GO SRGM applied to SYS1 dataset

Changepoint at $\tau = 16$, $(t_{\tau=16} = 1,056)$ maximizes likelihood
GO SRGM with and without CP

GO with changepoint fits data better
GO SRGM with and without CP (2)

<table>
<thead>
<tr>
<th>Datasets</th>
<th>0-CP GO AIC</th>
<th>1-CP GO AIC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>1953.61</td>
<td>1938.31</td>
<td>15.3</td>
</tr>
<tr>
<td>SYS2</td>
<td>1377.08</td>
<td>1377.01</td>
<td>0.07</td>
</tr>
<tr>
<td>SYS3</td>
<td>2190.91</td>
<td>2187.34</td>
<td>3.57</td>
</tr>
<tr>
<td>S2</td>
<td>902.187</td>
<td>894.113</td>
<td>8.074</td>
</tr>
<tr>
<td>S27</td>
<td>673.603</td>
<td>660.634</td>
<td>12.969</td>
</tr>
<tr>
<td>SS3</td>
<td>3468.19</td>
<td>3447.77</td>
<td>20.42</td>
</tr>
<tr>
<td>SS4</td>
<td>2576.69</td>
<td>2569.72</td>
<td>6.97</td>
</tr>
<tr>
<td>CSR1</td>
<td>4793.71</td>
<td>4690.27</td>
<td>103.44</td>
</tr>
<tr>
<td>CSR2</td>
<td>1848.57</td>
<td>1818.25</td>
<td>30.32</td>
</tr>
<tr>
<td>CSR3</td>
<td>1216.16</td>
<td>1193.56</td>
<td>22.6</td>
</tr>
</tbody>
</table>

GO with changepoint significantly better on 9 of 10 datasets
DSS SRGM with and without CP

<table>
<thead>
<tr>
<th>Datasets</th>
<th>0-CP DSS AIC</th>
<th>1-CP DSS AIC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>2075.15</td>
<td>1995.15</td>
<td>80</td>
</tr>
<tr>
<td>SYS2</td>
<td>1410.55</td>
<td>1387.59</td>
<td>22.96</td>
</tr>
<tr>
<td>SYS3</td>
<td>2260.81</td>
<td>2203.73</td>
<td>57.08</td>
</tr>
<tr>
<td>S2</td>
<td>962.427</td>
<td>902.025</td>
<td>60.402</td>
</tr>
<tr>
<td>S27</td>
<td>702.401</td>
<td>657.854</td>
<td>44.547</td>
</tr>
<tr>
<td>SS3</td>
<td>3561.85</td>
<td>3446.40</td>
<td>115.45</td>
</tr>
<tr>
<td>SS4</td>
<td>2599.31</td>
<td>2575.37</td>
<td>23.94</td>
</tr>
<tr>
<td>CSR1</td>
<td>5078.03</td>
<td>4713.92</td>
<td>364.11</td>
</tr>
<tr>
<td>CSR2</td>
<td>1913.69</td>
<td>1800.17</td>
<td>113.52</td>
</tr>
<tr>
<td>CSR3</td>
<td>1290.59</td>
<td>1211.28</td>
<td>79.31</td>
</tr>
</tbody>
</table>

DSS with changepoint significantly better than model without
DSS SRGM with and without CP (2)

DSS with changepoint fits S27 data better
Homogeneous vs. Heterogeneous models

<table>
<thead>
<tr>
<th>Datasets</th>
<th>GO-GO</th>
<th>DSS-DSS</th>
<th>GO-DSS</th>
<th>DSS-GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>1938.31</td>
<td>1995.15</td>
<td>1944.65</td>
<td>1950.96</td>
</tr>
<tr>
<td>SYS2</td>
<td>1377.01</td>
<td>1387.59</td>
<td>1377.43</td>
<td>1376.3</td>
</tr>
<tr>
<td>SYS3</td>
<td>2187.34</td>
<td>2203.73</td>
<td>2185.31</td>
<td>2183.22</td>
</tr>
<tr>
<td>S2</td>
<td>894.11</td>
<td>902.025</td>
<td>894.18</td>
<td>900.616</td>
</tr>
<tr>
<td>S27</td>
<td>660.63</td>
<td>657.854</td>
<td>660.35</td>
<td>659.217</td>
</tr>
<tr>
<td>SS3</td>
<td>3447.77</td>
<td>3446.40</td>
<td>3440.58</td>
<td>3444.45</td>
</tr>
<tr>
<td>SS4</td>
<td>2569.72</td>
<td>2575.37</td>
<td>2567.81</td>
<td>2574.15</td>
</tr>
<tr>
<td>CSR1</td>
<td>4690.27</td>
<td>4713.92</td>
<td>4743.98</td>
<td>4678.29</td>
</tr>
<tr>
<td>CSR2</td>
<td>1818.25</td>
<td>1800.17</td>
<td>1819.41</td>
<td>1799.69</td>
</tr>
<tr>
<td>CSR3</td>
<td>1193.56</td>
<td>1211.28</td>
<td>1200.85</td>
<td>1209.33</td>
</tr>
</tbody>
</table>

Heterogeneous models preferred in six out of ten data sets
Summary, Conclusion, and Future work
Summary and Conclusion

• Developed heterogeneous single changepoint model
• Assesses models with and without changepoint
 – Models with changepoint often characterizes data better
• Compared homogeneous vs. heterogeneous models
 – Heterogeneous models outperformed homogeneous models on 60% of datasets considered
Future work

• Theoretical
 – Model selection procedure considering additional combinations of possible models
 – Performance optimization of algorithmic approach

• Empirical
 – Methods to assess the effectiveness of milestone decisions and testing between milestones
 – Combine with metrics-based models to identify effective activities
Acknowledgement

• This work was partially supported by (i) the Naval Air Warfare Center (NAVAIR) under Award Number N00421-16-P-0521 and (ii) the National Science Foundation (NSF) (#1526128).