

The (empirical) case for analyzing Likert data with parametric tests

Heather Wojton, PhD Institute for Defense Analyses

04/**XX**/2017

Roadmap

- Evaluating human-system interactions in OT
- The great debate
- Let the data decide
- Recommendations for analysts
- I stop talking

Human-system interaction affects mission success

Likert data is commonly used to measure HSI in OT

Data can be collected using a single item in the Likert response format...

How easy was it to navigate the interface?

Very D	oifficult				Very	Easy
1	2	3	4	5	6	7

... or using a Likert Scale (Likert, 1932; Likert & Hayes, 1957)

Likert Scales typically include 8 or more items

Furr & Bacharach (2014)

Testers **disagree** on appropriate analysis methods for Likert data

Roadmap

- Evaluating human-system interactions in OT
- The great debate
- Let the data decide
- Recommendations for analysts
- I stop talking

Not all numbers are created equal

Stevens (1946) proposed 4 levels of measurement

Levels of Measurement

	Nominal	Ordinal	Interval	Ratio
Identity	Х	Х	Х	Х
Order		Х	Х	Х
Quantity			Х	Х
Rational Zero				Х
Example	Sex	Education	Memory	Behavior

Researchers have criticized this classification system

(Mitchell, 1986; Velleman & Wilkinson, 1993)

More nuanced classification systems exist

(Chrisman, 1998; Mosteller & Tukey, 1977; van den Berg, 1991)

The ordinal-ist argument is grounded in Stevens' levels of measurement

How easy was it to navigate the interface?

How do you know the distance between points is equal?

A = B **OR** A ≠ B

Ordinal-ists argue you can't guarantee distances are equal and thus, Likert data is ordinal

George, Edward J. (2004)

Ordinal-ists argue that Likert data violate the assumptions of parametric tests

They argue Likert data is not **continuous** or **normally distributed**

Argument is easier to apply to single Likert items than Likert scales

www.lock5stat.com

www.lock5stat.com

www.lock5stat.com

www.lock5stat.com

www.lock5stat.com

Ordinal-ists argue that we will experience higher error rates using parametric statistics on Likert data because of these violations

(Nunnally, 1967; Jaimeson, 2004)

The Problem: Ordinal-ists are all theory and no data

Roadmap

- Evaluating human-system interactions in OT
- The great debate
- Let the data decide
- Recommendations for analysts
- I stop talking

The distance between scale points is an empirical question

Question

Visual Analogue Scale (VAS) scores correspond to actual changes in intensity of stimuli and are widely recognized as interval data

(Bolognese et al., 2003; Joyce et al., 1975; Myles et al., 1999; Price et al., 1983)

Evidence indicates the distance between scale points is roughly equal

Multiple studies have replicated this effect

(Baggaley & Hull, 1983; Carifio, 1976; Carifio 1978; Davey et al., 2007; Mauret & Pierce, 1998; Parker et al., 2002)

The effect of non-normality on error rates is an empirical question

The F-test is robust to violations of normality (Bartlett, 1937; Boneau,

1960; Box & Anderson, 1955; David & Johnson, 1951; Glass et al., 1972; Gombolay & Shah, 2016; Lindquist, 1953; Norton, 1952; Pearson, 1931)

Glass (1972) examined the effect of scale length on type I error rate in F-tests

The F-test controlled type I error rates for scales with at least 5 points

Skewness, kurtosis, and moderate heterogeneity of variance had little impact

Five-Point Scale					
		Nominal Significance Levels			
Populations					
Sampled	n	.10	.05	.01	
A,A,A,A	11	.1014	.0516	.0104	
A,A,A,A	51	.0986	.0518	.0096	
B,B	11	.1074	.0518	.0130	
B,B	51	.1024	.0516	.0118	
B,B,B,B	11	.0976	.0516	.0104	
B,B,B,B	51	.1004	.0492	.0108	
C,C	11	.0992	.0470	.0088	
C,C	51	.1000	.0502	.0094	
C,C,C,C	11	.1016	.0480	.0096	
C,C,C,C	51	.0974	.0522	.0108	
A,B*	11	.1128	.0556	.0100	
A,B	51	.0996	.0504	.0106	
A,B,B,B	11	.1040	.0550	.0132	
A,B,B,B	51	.1016	.0494	.0128	

We **do not** risk higher error rates when analyzing Likert data with the F-test or t-test

The effect of non-normality on error rates is an empirical question

The Pearson correlation is **robust** to violations of normality (Pearson, 1931, 1932a, 1932b; Dunlap, 1931; Havelick & Peterson, 1976; Murray, 2013)

Norman (2010) asked participants to complete 8, 10-point Likert format questions on 2 occasions

Computed Pearson and Spearman correlations for responses across the 2 occasions Original Collapsed Transformed

Predicted the Spearman correlation from the Pearson correlation

	10 point scales	5 point scales	4 point scales
Slope	1.001	1.018	0.995
Intercept	-0.007	-0.013	-0.0003
Correlation	0.990	0.992	0.987
Mean Pearson	0.529	0.521	0.485
Mean Spearman	0.523	0.517	0.488

Pearson performed equivalent to Spearman even when data was severely non-normal

We **do not** risk higher error rates when analyzing Likert data with the Pearson correlation or Regression

Roadmap

- Evaluating human-system interactions in OT
- The great debate
- Let the data decide
- Recommendations for analysts
- I stop talking

Use **parametric statistics** to analyze your Likert data

Likert data approximates interval data Greater power to detect an effect Error rates are <u>not</u> higher

Roadmap

- Evaluating human-system interactions in OT
- The great debate
- Let the data decide
- Recommendations for analysts
- I stop talking

In science, data trumps theory

Questions?

