Reflections on Statistical Engineering and Its Application

Geoff Vining
Outline

• Overview of Statistical Engineering
• Initial Thoughts on “Building Blocks”
• Initial Thoughts on “Statistical Engineering Principles”
• NASA Example
• Impact on the DoD, NASA, and the National Labs
Acknowledgement: My Co-Conspirators

- Roger Hoerl
- Ron Snee
- Pete Parker
Overview of Statistical Engineering

- Future focus: Large, unstructured, complex problems!
- Solutions require collaboration among high profile interdisciplinary teams!
- Problems cut across the organization
Overview of Statistical Engineering

• Building upon Six Sigma
 • Good strategic structure
 • Need for something tactical in between
 • How do we deploy our tools?
• Success requires new tools and mindset
• Need to ask how we can generalize solution tactics to solve future problems
Overview of Statistical Engineering

• One pathway: Statistical Engineering
• Goal: Develop appropriate theory
 • to apply known statistical principles and tools
 • to solve high impact problems
 • for the benefit of humanity.
• Minimize “one-off” solutions
Overview of Statistical Engineering

• The heart of Statistical Engineering is the scientific method.

• Most theories underlying statistical engineering involve strategic application of the scientific method.
 • Deming-Shewhart PDCA (Plan, Do, Check, Act)
 • DMAIC (Define, Measure, Analyze, Improve, Control)
Initial Thoughts on the Building Blocks

• The Scientific Method Is a Fundamental Approach for Discovery and Problem Solving
• Statistical Thinking Is Essential Developing Solutions
• Success Requires Teams that Function Well
 • Subject Matter Expertise
 • Statistical/Analytical Expertise
• “All Models Are Wrong; Some Are Useful”
Initial Thoughts on the Building Blocks

- Probability is the basic language for quantifying uncertainty.
- All probability statements are subjective, depending on critical assumptions (beliefs!).
- Statistical methods must be as robust as possible to assumptions and models.
- Other people must be able to duplicate results.
SE Principle 1

• Proper Data Collection, Analysis, and Interpretation Are Essential for the Scientific Method
 • Dependence on the proper question of interest
 • Impact of restrictions on data collection
 • Proper consideration of constraints on factors/ regressors
 • Must avoid error of the third kind!
 • In early phases, data include expert opinion.
SE Principle 2

• All Data Collection, Especially Experimentation, Must Be Sequential
 • Iterative procedure
 • Adaptive
 • Able to mitigate problems
 • Each phase targets different questions
 • Final Phase: Data must dominate opinion to extent possible.
SE Principle 3

• All Data Collection Must Recognize Sources of Variability
 • Local control of error (blocking, co-variates)
 • Basis to minimize biases, understand true precision
 • Understanding sources necessary for variation reduction
 • More complicated the problem, the more sources of variability!
SE Principle 4

• Approximate Models that Include Uncertainty Are Fundamental to Analysis
 • At least two sources of error:
 • Model: over- or under-specified; linear or non-linear
 • Background noise – Often combination of several sources!
 • Important to understand error propagation, especially as the system becomes more complex
SE Principle 5

• Analyses Require Clear Statements about All Modeling Assumptions
 • Essential for other researchers to duplicate
 • States and justifies the beliefs of the research team
 • Subject matter experts
 • Analysis
 • Essential for both Bayesian and Frequentist Analysis!
SE Principle 6

• All Analyses Require the Proper Use of Data to Assess Assumptions
 • Residual analysis typically essential
 • Raw residuals never appropriate!
 • Must standardize as closely as possible to appropriate distribution
 • Translate residual to subject matter language/understanding
 • Reserve data for model validation/confirmation
SE Principle 7

• Difference between Data Cleansing and Data Manipulation
 • Data cleansing: Identifying and correcting bad data
 • Data manipulation: throwing away data not consistent with assumed model (original beliefs of the research team)
 • Outliers often are the most interesting data points!
 • Cannot discard data without proper assignable cause!
SE Principle 8

• Analyses Must Take into Proper Account the Sources of Variability
 • Informal: Database records for check “interesting” cases
 • Formal:
 • Blocking
 • Variance component estimation
 • Including covariates in formal model
SE Principle 9

• Complex Systems of Systems
 • Require combination of subject matter expert first principles/physics and statistical/empirical models
 • Outputs from subsystems become inputs to assemblies
 • Proper propagation of error models essential
 • Empirical confirmation of models
 • Generally easier at the simplest subsystems
 • Often, limited opportunities for complex assemblies
SE Principle 9 - Continued

• Belief Networks Can Provide Basis to Combine Information from Subsystems into Assemblies
 • Combination of subject matter opinion and frequentist model outputs
 • Formal Bayesian with strong prior distributions
 • Require clearly stated and vetted assumptions
 • Empirical confirmation highly desired but impossible in certain cases
 • Common limitation: focus on probability of an event (0/1 data)
SE Principle 10

• Interactions Often Are More Important than Main Effects
 • Operational-Developmental Testing
 • Insights from Robust Parameter Design
 • System robustness to environmental conditions
 • Proper mitigation strategies for operating system
NASA Example - COPVs

• Relatively Small Statistical Engineering Project
• Overarching Question of Interest: Reliability of COPVs at Use Conditions for Expected Life of Mission
• Issues:
 • Many different types of COPVs used in spacecraft
 • Vessel tests are very expensive: money and time
• NASA Engineering Safety Center (NESC) Project
COPVs

• The Core NESC Analytics Team:
 • Reliability Engineers:
 • JPL
 • Langley Research Center
 • Glenn Research Center
 • Statisticians:
 • Marshall Space Flight Center
 • Virginia Tech
COPVs

- NASA Team’s Approach: Focus on Strands Used to Wrap Vessels
 - Less expensive
 - Can have many more experimental units than for vessels
- Still Issue with Time to Test
- Problem: How Do Strands Predict Vessel Behavior?
COPVs

• Initial Study: Previous Strand and Vessel Tests
 • Relevant strand study conducted at a national lab:
 • 57 strands at high loads for 10 years
 • Net information learned: Strands either fail very early or last more than 10 years
 • Vessel studies:
 • Also 10 years
 • Weibull model parameters seem similar to strand studies
COPVs

- Team’s Initial Concept
 - Much larger study
 - Censor very early
 - Reduces time
 - Allows the larger study in a practical amount of time
- Proceed in phases
- Have detailed data records to track any problems
COPVs

• Phase A: Conducted During Shake-Out of Equipment
 • Small study (although bigger than the national lab study!)
 • Statistical goal: Determine if the parameters from the national lab study are valid as the basis for planning the larger study!
 • Note: Phase A gave the team an opportunity to re-plan the larger experiment, if necessary!
COPVs

• Phase B: “Gold Standard” Experiment
 • Planned time required: 1 year
 • Used 4 “blocks” of equal numbers of strands
 • Allowed the team to correct for time effects
 • Allowed the team to mitigate problems, especially early
 • Study assumed the “classic” Weibull model
 • Size of the experiment assured ability to assess model
COPVs

• Total Size of the Database: Huge
 • Kept data from start of specific strand test to failure on the second
 • Kept the last 2 minutes at the .01 second from buffer
 • Buffer allowed team to investigate unusual phenomena at failure
 • Essential for proper data cleansing
COPVs

- Parallel Vessel Study
 - Reasonably large ISS study targeted to end early (< 10 yrs)
 - Opportunity to step up loads to mimic strands
 - Censored but longer censor time than strands
COPVs

• Results to Date:
 • Phase A: Surprisingly similar to national lab study
 • Phase B:
 • Serious problem occurred with the gripping in the first block
 • Serious conversations with possibility of replacing!
 • Other three blocks well behaved and by themselves produced better than the planned precision for the estimates
 • Residual analysis confirmed the Weibull model
Why is COPVs Statistical Engineering?

- Application of Scientific Method to a Complex Problem
- Sequential Data Collection/Experimentation
- Each Phase Targeted Different Questions
- Clearly Documented Assumptions, Assessed via Data
- Took Proper Steps to Cleanse Data
- Real Research Question Involves System of Systems
SE Impact for DoD, NASA, Labs

• Large, Unstructured, Complex Problems Everywhere!
• Can No Longer Afford “One-Off” Solutions
• Time/Resource Restraints Demand Effective Tactical Approaches for Problem Solutions
 • Issue has not been a lack of tools
 • Issue has been how to deploy these tools!
 • Major overlap with standards of practice for data analysis
SE Impact for DoD, NASA, Labs

HELLO STATISTICAL ENGINEERING!