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Abstract
Circular prediction regions are used in ballistic testing to express the uncertainty
in shot accuracy. We compare two modeling approaches for estimating circu-
lar prediction regions for the miss distance of a ballistic projectile. The miss
distance response variable is bivariate normal and has a mean and variance
that can change with one or more experimental factors. The first approach fits
a heteroskedastic linear model using restricted maximum likelihood, and uses
the Kenward-Roger statistic to estimate circular prediction regions. The second
approach fits an analogous Bayesian model with unrestricted likelihood modifi-
cations, and computes circular prediction regions by sampling from the posterior
predictive distribution. The two approaches are applied to an example problem,
and are compared using simulation.
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1 INTRODUCTION

In defense testing, miss distance measurements play an important role in weapon system evaluations. Weapon accuracy,
whether it be for a hand gun,mortar, or artillery system, is one of the largest contributors to theweapon’s effectiveness and
lethality. A prudent weapon system evaluation leverages a designed experiment to provide an efficient characterization
of accuracy as a function of anticipated combat conditions.
Miss distance is typically a univariate or bivariate response variable. A bivariate evaluation measures the 𝑥- and 𝑦-

component distances between the projectile aim point and the impact point. A univariate evaluation collapses these mea-
surements to a radial distance.
Bivariate evaluations contain more information and have practical advantages. Consider a notional artillery test that

reveals that a projectile overshoots its target when it is exposed to certain combat conditions. Collapsing to a radial miss
distance retains the magnitude of this miss, but not the direction. The directional information can assist in the diagnosis
of the issue, improve target damage prediction, and help minimize collateral damage.
Historically, weapon accuracy evaluations estimate circular error probable (CEP) that assumes that the 𝑥- and 𝑦-

component miss distances follow a bivariate normal distribution, the 𝑥- and 𝑦-component means are independent, and
the 𝑥- and 𝑦-component variances are identical. That is,

(
𝑥

𝑦

)
∼ 

((
𝜇𝑥
𝜇𝑦

)
,

(
𝜎2 0

0 𝜎2

))
.

CEP is then estimated as the radius of the circular contour line representing the 𝑝th quantile of the joint distribution.1–3
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Much of the original work on weapon accuracy evaluations did not use a designed experiment. For instance, Moranda,3
Elder,1 andWilliams4 collectively review more than 10 different CEP estimators. In each case, the estimator assumes that
the data are collected under a fixed condition, resulting in a single CEP estimate.
Recently, model-based procedures have been used to account for a change in CEP with experimental factors. Zimmer

and Casey5 use a model-based approach to estimate CEPs and circular tolerance regions for an Army ballistic system
test that includes firing charge, fuze mode, firing angle, and range to target as factors in the experimental design. Their
approach accommodates heteroskedasticity in a normal linear model to capture a change in the CEP estimate.
Circular tolerance regions replace CEP estimates in some weapon accuracy studies to convey uncertainty while simpli-

fying the presentation of results. A 𝑝 content, 1 − 𝛼 coverage, circular tolerance region contains a proportion 𝑝 or more
of the future miss distances, with confidence level 1 − 𝛼 (eg, Ref. [6, p. 294]). Hall and Sheldon,7 Didonato,8 and Zhang
and An9 used tolerance regions to assess weapon accuracy.
Circular prediction regions serve a similar purpose as circular tolerance regions. A 𝑝 content circular prediction region

contains a proportion 𝑝 of the future miss distances, on average (eg, Ref. [6, p. 295]). This is the two-dimensional version
of a prediction interval. Computations of circular prediction regions are readily accessible in the literature for a variety of
different models.
In this paper, we explore two approaches for constructing circular prediction regions using normal linear models

that accommodate heteroskedasticity. The first is a frequentist approach that fits a heterokcedastic linear model using
a restricted maximum likelihood (REML) algorithm proposed by Smyth.10 The model permits the mean and variance to
change with the experimental factors, and employs the Kenward-Roger statistic11 to compute circular prediction regions
that are centered at the mean.
The contributions of our first approach are as follows. Smyth’s model and fitting procedure are intended for a univariate

response variable. We extend its use to accommodate circular prediction region estimation for the bivariate miss distance
response variable using a unique formulation of the model. Additionally, we have not seen the Kenward-Roger statistic
used with Smyth’s REML algorithm, or for estimating circular prediction regions.
The second approach fits an analogous Bayesian model, but with an unrestricted likelihood, and computes circular

prediction regions by sampling from the posterior predictive distribution of the bivariate response, given the posterior
distribution of all model parameters. We assume noninformative, flat priors for the mean and variance coefficients. We
have not seen this approach used in a weapon accuracy study.
In the next section,we beginwith amotivating example. Sections 3 and 4 detail the frequentist andBayesian approaches,

respectively. Section 5 applies each approach to the motivating example. Section 6 conducts a simulation study to investi-
gate the empirical coverage rates of the two approaches, and Section 7 concludes with commentary about the advantages
and disadvantages of each approach.

2 MOTIVATING EXAMPLE

A new weapon is being developed and the testers would like to compare its accuracy to the old weapon. Each weapon is
assessed across varying ammunition types and ranges from the target. The ammunition type is a categorical factor that
has two levels: A or B, while range is continuous but is fixed at two levels: near (1000 ft) or far (2000 ft).
The experiment is a balanced 23 full factorial with five replicates per unique design point. That is, the experiment has

23 = 8 unique design points, each with five replicates, resulting in 40 shots (observations) that are executed according
to a completely randomized run order. Each shot results in a pair of miss distances: a horizontal (𝑥) and a vertical (𝑦)
component. Table 1 presents the miss distance data for this example.
As a first attempt at an analysis, supposewe assume that themiss distance exhibits constant variance and fit the bivariate

linear model
(
𝒙

𝒚

)
=

(
𝑴 𝟎

𝟎 𝑴

)(
𝝆

𝜻

)
+ 𝝐, (1)

where

∙ 𝒙
𝑛×1

and 𝒚
𝑛×1

are the component miss distances,

∙ 𝑛 is the number of observations (40 in this example),
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JOHNSON et al. 2993

TABLE 1 Example miss distance pairs, grouped by the three factors: distance, weapon type, and ammunition type. Each row represents
a unique design point

Range Weapon Ammo type Miss distance (𝒙,𝒚) in feet
Far New A (16,−17), (23,−15), (15,2), (4,5), (9,2)
Near New A (2,0), (4,−2), (−2,−4), (5,5), (2,3)
Far Old A (−16,2), (−1,−2), (−8,−26), (−14,−11), (−4,2)
Near Old A (0,0), (−2,2), (−2,−1), (1,−2), (−1,1)
Far New B (19,6), (2,6), (4,0), (3,−7), (10,−10)
Near New B (2,3), (0,7), (4,2), (0,3), (1,3)
Far Old B (8,−6), (−5,0), (3,−5), (−8,−4), (4,−18)
Near Old B (−1,8), (−2,4), (2,3), (−1,3), (2,3)

F IGURE 1 Residuals from linear model fit

∙ 𝑴
𝑛×𝑞

is the model matrix for the mean for each component,
∙ 𝑞 is the number of coefficients for the mean for each component,
∙ 𝝆

𝑞×1
and 𝜻

𝑞×1
are the coefficients for the mean for each component, and

∙ 𝝐
2𝑛×1

∼ 𝑁(𝟎, 𝜎2𝑰) are the residuals.

A variety of diagnostic plots are available for checking the constant variance assumption in this model. One of these,
which appears in Figure 1, shows the model fit residuals (𝝐) by factor-level setting. This plot reveals that the residual vari-
ability for the range-to-target “Far” setting is larger than “Near,” indicating a violation of the constant variance assumption.
A simpler argument against this naive modeling approach is that the constant variance assumption is in contradiction

with our desire to model a change in circular prediction regions. Constant variance will cause the radii of the circular
prediction regions that are estimated at the design points to be identical. A different approach is needed to capture a
change in miss distance variability.

3 FREQUENTIST APPROACH

Our first approach is a frequentist method for constructing model-based circular prediction regions. This section focuses
on theory, and is divided into three subsections: model formulation, model reduction, and circular prediction regions.
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2994 JOHNSON et al.

3.1 Model formulation

The bivariate heteroskedastic linear model is

𝒀 ∼  (𝑨𝜷, 𝚺), 𝚺 = diag(exp (𝛀𝜸)), (2)

where

∙ 𝒀
2𝑛×1

=

(
𝒙

𝒚

)
is the vector of miss distances,

∙ 𝑨
2𝑛×2𝑞

=

(
𝑴 𝟎

𝟎 𝑴

)
is the model matrix for the mean,

∙ 𝜷
2𝑞×1

=

(
𝝆

𝜻

)
is the coefficient vector for the mean,

∙ 𝛀
2𝑛×𝑟

=

(
𝒁

𝒁

)
is the model matrix for the variance,

∙ 𝒁
𝑛×𝑟

is the model matrix for the variance for each direction,
∙ 𝜸

𝑟×1
is the coefficient vector for the variance, and

∙ 𝑟 is the number of coefficients for the variance,

where the diag(⋅) function returns a square matrix with its argument along the diagonal and zeros elsewhere, and the
exp(⋅) function operates element-wise on the entries of the 2𝑛 × 1 vector𝛀𝜸 .
This model is sometimes referred to as a loglinear variance model (eg, JMP12), a double generalize linear model (eg,

Montgomery13), or a heteroskedastic linear model (eg, Verbyla14). But in those references, the model focuses on a single
response variable.
Here, we use the followingmodel formulation to accommodate a bivariate response. First, we concatenate the response

vectors, 𝒙 and 𝒚, into a single vector, 𝒀. Second, we create a block diagonal matrix, 𝑨, for the model matrix for the mean,
which allows the 𝑥- and 𝑦-component mean coefficient vectors, 𝝆 and 𝜻 , to be independently estimated. Third, we stack
the model matrices for the variance to create a single matrix, 𝛀, which constrains the estimated 𝑥- and 𝑦-component
variance coefficient vectors to be identical and denoted as 𝜸 . The bivariate formulation of this model constrains individual
prediction regions to be circular and centered at the mean.
The model is fit using an REML estimation technique proposed by Verbyla14 and later generalized by Smyth.10 The

technique uses the method of scoring to determine the estimates of 𝜷 and 𝜸 , which are denoted as 𝜷 and 𝜸̂ . We use the
function remlscore of the 𝖱15 package statmod10 to fit the model.

3.2 Frequentist model reduction

Model reduction involves a series of hypothesis tests to determinewhich𝑥- and 𝑦-component coefficient pairs are included
in the model. Let 𝜌𝑗 and 𝜁𝑗 , respectively, denote the 𝑗th component of 𝝆 and 𝜻 , where 𝑗 = 2, 3, 4, … , 𝑞. The null and
alternative hypotheses for the 𝑗th test are

𝐻0 ∶ 𝜌𝑗 = 0 and 𝜁𝑗 = 0, (3)

𝐻𝑎 ∶ 𝜌𝑗 ≠ 0 or 𝜁𝑗 ≠ 0, (4)

and the Kenward-Roger11 test statistic is

𝐹̂ =
1

𝑙

(
𝜷 − 𝜷

)′
𝑳
(
𝑳′Φ̂𝑳

)−1
𝑳′
(
𝜷 − 𝜷

)
, where 𝜆𝐹̂ ∼ 𝑙,𝑚. (5)

Here, 𝑳 (size 𝑙 × 2𝑞) specifies the linear combination of coefficients, 𝚽̂ (size 2𝑞 × 2𝑞) is the variance-covariance matrix
of 𝜷 that is returned from the remlscore fitting function, and 𝑙 is the number of simultaneous combinations of
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JOHNSON et al. 2995

coefficients that are involved in the hypothesis test, which is equal to 2. 𝑙,𝑚 denotes the F distribution with 𝑙 numer-
ator and 𝑚 denominator degrees of freedom, and 𝜆 is a scaling constant. 𝜆 and 𝑚 are calculated using Equations (A2)
and (A3).
The test statistic and 𝑃-value for the 𝑗th hypothesis test are computed as follows. Let 𝑩𝑗 denote a vector of size 1 × 𝑞

with its 𝑗th component equal to 1 and all other components equal to 0. To compute the test statistic for the 𝑗th hypothesis
test, in Equation (5), substitute in the estimates for 𝜷 and 𝚽̂, and set 𝑙 = 2, 𝜷 = 𝟎, and

𝑳
2×2𝑞

=

(
𝑩𝑗 𝟎

𝟎 𝑩𝑗

)
. (6)

The 𝑃-value for the 𝑗th test is equal to 1 − 𝐹̂∕𝜆,𝑙,𝑚, where 𝐹̂ was computed in Equation (5). The null hypoth-
esis is rejected and the coefficient pair is significant if the 𝑃-value is less than the prespecified significance
level, 𝛼.
We use a backward selection technique to reduce the model. The approach starts with a full model. In a sequential

process, it removes an insignificant coefficient pair from the model and recalculates the 𝑃-values for the remaining pairs.
This process continues until only significant coefficient pairs remain.

3.3 Circular prediction region

A 𝑝 content circular prediction region estimated at the design point corresponding to the 𝑖th row of𝑴, denoted as𝑴𝑖 , is
computed as follows. Let

𝑳
2×2𝑞

=

(
𝑴𝑖 𝟎

𝟎 𝑴𝑖

)
, (7)

and define 𝑮, which serves a similar purpose as 𝑳 but for the variance coefficients, as

𝑮
2×𝑟

=

(
𝒁𝑖
𝒁𝑖

)
, (8)

where 𝒁𝑖 denotes the 𝑖th row of 𝒁. Then, the equation for the radius of the circular prediction region that is centered at
𝑳𝜷 is

√
𝑙𝜆
(
diag(exp(𝑮𝜸̂)) + 𝑳′𝚽̂𝑳

)−1
𝑝,𝑙,𝑚

, (9)

where−1
𝑝,𝑙,𝑚

returns the 𝑝 × 100th quantile of the cumulative𝐹 distributionwith 𝑙 numerator and𝑚 denominator degrees
of freedom. Note that Equation (9) returns a 2 × 2 diagonal matrix. The diagonal terms are identical and are equal to the
radius of the circular prediction region. Also, in this equation, 𝑙 = 2, 𝜸̂ and 𝚽̂ are obtained from the model fit, and 𝜆 and
𝑚 are calculated using Equations (A2) and (A3).

4 BAYESIAN APPROACH

4.1 Bayesian model formulation

Wemay define a Bayesian approach that “mirrors” the frequentist approach. The Bayesian model has the same data like-
lihood as before, and places prior distributions on parameters 𝜷 and 𝜸 . Let 𝜽 = (𝜷′, 𝜸′)′. We may write the data likelihood
as

𝒀|𝜽 ∼  (𝑨𝜷, 𝚺), 𝚺 = diag(exp (𝛀𝜸)). (10)

 10991638, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.2771 by Institute For D

efense A
nalyses, W

iley O
nline L

ibrary on [27/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2996 JOHNSON et al.

In our computational exploratory analysis of this model, we have found empirically that independent noninformative
priors for 𝜷 and 𝜸 provide acceptable results. That is, we set

𝛽𝑖 ∼  (−∞,+∞), 𝑖 = 1, … , 𝑞, (11)

and

𝛾𝑗 ∼  (−∞,+∞), 𝑗 = 1,… , 𝑟, (12)

where is the improper uniform distribution. Thus, the joint posterior distribution, 𝑝(𝜽|𝒀), is proportional to the likeli-
hood of the data. As we are principally interested in parameter and interval estimation, the improper prior is acceptable
for our task. In our exploratory analysis of this model, we found that these improper prior distributions lead to a proper
posterior distribution.

4.2 Bayesian model reduction

Numerous information criterion statistics are available to aide in model comparison, but none are universally appealing.
A cross-validation estimate of out-of-sample prediction error may be permissible for our problem because it can be used
for comparing models with noninformative prior distributions.
We use the leave-one-out cross validation (LOOCV) statistic that appears in Equation (13) to compare models. This

technique repeatedly partitions the data into 𝑛 subsamples of size 𝑛 − 1. Models on the 𝑛 training data sets are fit, and
predictions are made on the single, remaining 𝑦𝑖 removed from each training data set.

LOOCV =

𝑛∑
𝑖=1

log 𝑝(−𝑖)(𝑦𝑖|𝜽post), (13)

where the distribution𝑝(−𝑖)(𝑦𝑖|𝜽post) is the posterior predictive distribution of the training datawithout the 𝑖th observation
evaluated at 𝑦𝑖 . If the difference between the LOOCV of the full and reduced model is minimal (less than two standard
errors from 0), we favor the reduced model. Details on LOOCV for Bayesian models are supplied by Gelman et al16 and
Vehtari et al.17

4.3 Bayesian circular prediction interval

We compute circular prediction regions from the posterior predictive distribution of the Bayesian model. We can sample
from the posterior predictive distribution,

𝑝(𝒚𝑟𝑒𝑝|𝒀) = ∫
𝜽

𝑝(𝒚𝑟𝑒𝑝|𝜽)𝑝(𝜽|𝒀)𝑑𝜽,
using the statistical software, 𝖲𝗍𝖺𝗇,18 by simulating draws from the data likelihood, 𝑝(𝒚𝑟𝑒𝑝|𝜽), given draws from the poste-
rior, 𝑝(𝜽|𝒀). The resulting distribution will be centered at the posterior mode of the linear predictor,𝑨𝜷, but have a larger
variance to account for the inherent uncertainty involved in new data.
To form the bivariate prediction circles, we consider the joint distribution of 𝒚𝑟𝑒𝑝 = (𝑥𝑟𝑒𝑝, 𝑦𝑟𝑒𝑝) where 𝑥𝑟𝑒𝑝 and 𝑦𝑟𝑒𝑝

are draws from the posterior predictive distribution 𝑝(𝒚𝑟𝑒𝑝|𝜽). Conditional on the specific rows of𝑴 and 𝒁 of import, we
generate (say) 10 000 draws of 𝒚𝑟𝑒𝑝, yielding a bivariate sample.
A highest density region (HDR) containing 1 − 𝛼 of the joint posterior probability may be calculated using Hyndman’s

density quantile algorithm.19 Hyndman’smethod depends on a density estimate, whichmay be formed nonparametrically
using a kernel density estimate.
Kernel density estimates require selection of a bandwidth and kernel, but these “parameters” are unimportant as we

can sample such large quantities of data from the posterior distribution that variation in the density estimates depending
on the kernel and bandwidth quickly becomes negligible.
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JOHNSON et al. 2997

TABLE 2 ANOVA table for full model

Term 𝝆̂ 𝜻 𝑭̂ 𝒎 𝑷-val
Intercept 1.95 −1.38
Range 1.25 −3.42 7.11 47.76 .00
Weapon 4.20 0.97 9.95 47.76 .00
Ammo −0.40 −1.43 1.17 47.76 .32
Range by Weapon 3.10 1.02 5.70 47.76 .01
Range by Ammo −0.40 0.42 0.18 47.76 .83
Weapon by Ammo 0.62 0.18 0.90 45.81 .41

The contour of the 1 − 𝛼 HDR is approximately circular in our problem. To “mirror” results from our frequentist
approach, we constrain the prediction region to be exactly circular by computing the mean Euclidean distance from the
posterior mode to points on the estimated 1 − 𝛼 contour to form the radius of the circle. The posterior mode and this
radius define the circular prediction region.

5 APPLICATION TO THE EXAMPLE

Each approach is now applied to the example data from Section 2. We first formulate the full models (nonreduced) for the
mean and variance, and then construct the corresponding model matrices.
The full model for the mean is second order, and has one intercept, three main effect coefficients, and three two-factor

interaction coefficients. We code the factors using a typical “sum to zero contrast” (see the contr.sum function in the
stats package20 in 𝖱). In the model matrix, this coding scheme assigns a “−1” and “+1” to the first and second levels
of a two-level factor. As a result, the full model coefficient vectors for the mean, 𝝆 and 𝜻 , are each of size 7 × 1, and the
combined vector, 𝜷, is of size 14 × 1.
We assume a structure for the variance formula. Visual inspection of the residuals in Figure 1 suggests a variance formula

that includes an intercept term and a main effect for the range-to-target factor. Thus, 𝜸 is size 2 × 1.

5.1 Frequentist approach

The model is fit using the remlscore function of the 𝖱15 package statmod. The inputs to the function are 𝒀 (size 80 × 1),
𝑨 (size 80 × 14), and 𝛀 (size 80 × 2). The function outputs the estimated coefficients for the mean 𝜷, which is composed
of the estimated 𝑥- and 𝑦-component coefficients, 𝝆̂, and 𝜻 . The function also outputs the estimated variance coefficients,
𝜸̂ , in addition to 𝚽̂ and 𝑾̂, which are the estimated covariance matrices for 𝜷 and 𝜸̂ , respectively.
Model reduction begins with a hypothesis test on each pair of coefficients in the full model. These results are

presented in Table 2. The backward selection procedure sequentially removes insignificant terms from the model.
As a result, the coefficient pairs for Ammo, Range by Ammo, and Weapon by Ammo are removed from the
model.
Table 2 shows that Range, Weapon, and the interaction between Range and Weapon are significant at the 𝛼 = .05 sig-

nificance level. The positive and large 𝑥-component coefficient for Weapon (equal to 4.20) indicates that the mean miss
distance shifts right as Weapon changes from old to new. This trend is magnified as Range changes from near to far, as
indicated by the positive and large 𝑥-component Range by Weapon interaction coefficient (equal to 3.10). The negative 𝑦-
component coefficient for Range (equal to−3.42) indicates that themeanmiss distance shifts downward as Range changes
from near to far. Additionally, the intercept coefficients show that the overall meanmiss distance is biased downward and
to the right of the aim point (the origin).
Circular prediction regions are constructed using the reduced model and Equation (9). We set 𝑃 = .5, which implies

that a prediction region contains 50% of the sampled miss distances, on average. Figure 2 displays the circular prediction
region for each unique mean that remains in the reduced model. The solid line shows the prediction region using the
frequentist approach, while the dashed line corresponds to the Bayesian approach.
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2998 JOHNSON et al.

F IGURE 2 Circular prediction regions estimated from reduced model fit

TABLE 3 Posterior means, standard deviations, and 90% credible intervals for full model parameters

Term Mean Std. Dev. 𝟗𝟎% Interval
𝜌Intercept 1.95 1.00 (0.31, 3.59)

𝜌Range 1.25 1.00 (−0.40, 2.89)

𝜌Weapon 4.20 1.00 (2.56, 5.83)

𝜌Ammo −0.40 1.00 (−2.04, 1.24)

𝜌Range∶Weapon 3.10 0.99 (1.46, 4.73)

𝜌Range∶Ammo −0.40 0.99 (−2.04, 1.24)

𝜌Weapon∶Ammo 0.63 0.50 (−0.18, 1.46)

𝜁Intercept −1.37 1.00 (−3.02, 0.27)

𝜁Range −3.42 1.00 (−5.06, −1.78)

𝜁Weapon 0.98 1.00 (−0.66, 2.61)

𝜁Ammo −1.43 1.00 (−3.06, 0.22)

𝜁Range∶Weapon 1.03 1.00 (−0.61, 2.66)

𝜁Range∶Ammo 0.42 1.00 (−1.21, 2.06)

𝜁Weapon∶Ammo 0.18 0.50 (−0.64, 0.99)

𝜎Far 8.54 1.08 (6.97, 10.48)

𝜎Near 2.28 0.31 (1.85, 2.81)

5.2 Bayesian approach

Applying the Bayesian approach outlined in Section 4, we sample from the joint posterior distribution of 𝜽|𝒀 using the
statistical software 𝖲𝗍𝖺𝗇.18 We use 𝖲𝗍𝖺𝗇 partly because improper priors are allowed (as long as the resultant posterior dis-
tribution is proper) and partly because the built-in Markov chain Monte Carlo algorithm is relatively fast and reliable.
For the presently considered example data, we sample 100 000 times from four Markov chains. Half of the samples are
discarded for burn-in.
First, in Table 3, we examine the credible intervals for pairs (𝜌𝑖, 𝜁𝑖) that contain 0. We identify that credible intervals for

Ammo, Weapon by Ammo, and Range by Ammo contain 0 in both 𝜌 and 𝜁. These variables are candidates for removal
from the full model. A reduced model is considered that is composed of variables Weapon, Range, and Range byWeapon.
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TABLE 4 Simulation study scenarios

Scenario Experiment
Variance
formula

Mean
coefficients

Variance
coefficients

1 Design 1 Formula 1 Pattern 1 Pattern 3
2 Design 2 Formula 1 Pattern 1 Pattern 4
3 Design 1 Formula 2 Pattern 1 Pattern 4
4 Design 2 Formula 2 Pattern 1 Pattern 3
5 Design 1 Formula 1 Pattern 2 Pattern 4
6 Design 2 Formula 1 Pattern 2 Pattern 3
7 Design 1 Formula 2 Pattern 2 Pattern 3
8 Design 2 Formula 2 Pattern 2 Pattern 4

We use LOOCV to estimate the out-of-sample predictive fit of the full model and the reducedmodel. For the full model,
LOOCV = −240.3, and for the reduced model, LOOCV = −241.7. The difference is −1.4, with standard error 3.8, which
shows that there is not a practical difference between the models, from a predictive point of view. We proceed in our
Bayesian analysis with the reduced model.
In contrast to the frequentist approach, the Bayesian approach admits uncertainty intervals for all parameters of

interest. For example, we provide credible intervals for 𝜎Near and 𝜎Far. The disjointedness of these two credible inter-
vals provides evidence that the structure of 𝚺 is appropriate in that a reduction to a constant variance 𝚺 would be
unreasonable.
Due to the noninformative prior distributions on 𝜽, we do not observe any shrinkage in the posterior param-

eter estimates. Comparing Tables 2 and 3, we see that the posterior means are similar to frequentist parameter
estimates.
The computed circular prediction regions are also very similar. For the frequentist approach, the radii of the four circular

prediction regions in Figure 2 are 10.27, 10.27, 3.14, and 3.14 ft. The corresponding radii for the Bayesian approach are 10.59,
10.54, 3.21, and 3.23 ft. In this particular, a Bayesian approach with flat priors produced prediction regions with modestly
larger radii.

6 SIMULATION STUDY COMPARISON

The simulation study compares empirical frequentist coverage rates of circular prediction regions to their intended cov-
erage rates. This study serves as a limited verification of each approach. The general steps of the simulation are to

1. assume values for the true coefficients,
2. generate a sample data set from these true coefficients,
3. fit the model to these data,
4. calculate the circular prediction interval,
5. generate an additional data point and record whether it falls within the circular prediction interval,
6. repeat steps two through five many times, and
7. compare the intended coverage rate to the proportion of times the additional data point fell within the circular predic-

tion region.

The comparison is made across eight different scenarios. The scenarios are representative of typical defense tests, and
differ by their experimental design and model formulas. The eight scenarios appear in Table 4.
The scenarios comprise two experimental designs. Design 1 is a full factorial experiment that has three two-level factors.

Design 2 is a full factorial experiment that has two two-level factors and one three-level factor. Each is replicated 10 times,
which provides 80 and 120 samples for Designs 1 and 2, respectively.
In all scenarios, themean formula consists of main effects and two-factor interactions. The study includes two formulas

for the variance. Formula 1 includes an intercept and onemain effect for a two-level factor. Formula 2 includes an intercept
and two main effects for two two-level factors.
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TABLE 5 Coefficient patterns for simulation study

Vector
Intercept
setting

First
setting

Second
setting

Pattern 1 𝝆 2 −3 1
𝜻 1 −1 −2

Pattern 2 𝝆 3 2 1
𝜻 −2 −2 −1

Pattern 3 𝜸 3 −0.5 0.5
Pattern 4 𝜸 2 -1 1.5

TABLE 6 Simulated circular prediction interval coverage rates. Standard errors in parentheses

Frequentist approach Bayesian approach
Scenario Minimum Mean Maximum Minimum Mean Maximum
1 0.883 0.895 0.906 0.888 0.900 0.911

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
2 0.887 0.896 0.910 0.892 0.900 0.910

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
3 0.885 0.893 0.904 0.881 0.896 0.911

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
4 0.889 0.898 0.908 0.897 0.904 0.914

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
5 0.886 0.896 0.910 0.891 0.900 0.912

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
6 0.892 0.900 0.909 0.897 0.904 0.912

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
7 0.889 0.897 0.908 0.898 0.907 0.917

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
8 0.876 0.892 0.908 0.873 0.893 0.915

(0.006) (0.006) (0.007) (0.006) (0.006) (0.007)

True coefficients (𝝆, 𝜻 , or 𝜸) are set according to a specified pattern. The pattern sets the intercept equal to a specified
value, and then in an alternating sequence, sets the remaining coefficients in the vector equal to a first or second setting. As
shown inTable 5, Patterns 1 and 2 correspond tomean coefficients, andPatterns 3 and 4 correspond to variance coefficients.
To illustrate for Scenario 1, the 𝑥- and 𝑦-component mean coefficient vectors are of size 7 × 1 (one intercept, three main

effects, three two-factor interactions); thus, Pattern 1 yields

𝝆 =
[
2 −3 1 −3 1 −3 1

]
, (14)

𝜻 =
[
1 −1 −2 −1 −2 −1 −2

]
. (15)

Moreover, for Scenario 1, given Formula 1 and Pattern 3, the variance coefficient vector is 𝜸 =
[
3 −.5

]
.

The outputs of the simulation are the simulated coverage rates. We set the target coverage rate equal to 90% (𝑃 = .9), as
opposed to the 50% coverage rate we used in the example, to reduce the standard error in the simulated output.
The Bayesian fitting procedure is quite expensive, and thus, we only repeat steps 2 through 5 (see beginning of this

section) 2500 times. Each Bayesian model fit uses four chains with 6000 iterations, and 2000 of which are for burn-in.
A simulated coverage rate is calculated for each circular prediction region. The number of circular prediction regions

for a given scenario is determined by the experimental design. Design 1 has eight circular prediction regions, while Design
2 has 12 circular prediction regions.
The simulation results in Table 6 show the minimum, mean, and maximum simulated coverage rates among the 8 or

12 circular prediction regions for each scenario. The corresponding minimum, mean, and maximum standard error of the
simulated coverage rates is shown in parentheses.
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JOHNSON et al. 3001

The simulation results show that for each of the scenarios, the approaches produce simulated frequentist coverage
rates that are close to the intended rate (equal to 0.90). All mean coverage rates are within two standard errors of the
intended coverage rate. The simulation study appears to have verified the implementation of the approaches for these
limited numbers of scenarios.
As a closer look, we fit a linear model and conducted an analysis of variance using the simulated mean coverage rate as

the response variable to screen for influential main effects in the simulation study. Though not shown, results indicated
that the frequentist approach had a significantly lowermean simulated coverage rate (= 0.896) than the Bayesian approach
(= 0.901). Additionally, Pattern 3 (= 0.900) for the variance formula had a significantly higher mean simulated coverage
rate than Pattern 4 (= 0.896). Experiment, variance formula, and mean coefficients were not significant.

7 DISCUSSION

We presented two approaches for estimating circular prediction regions that produced similar results. In the example
problem, the conclusions from each approach were the same: the miss distance of the new weapon was biased to the
right, which was exacerbated at long range, and gravity appears to have caused the projectile to drop at long range.
Further, in the example, both methods produced statistical intervals that were similar in size, a fact that could be reas-

suring to traditional practitioners of frequentist methods. The results of this application provide anecdotal evidence that
in the absence of prior information, either statistical methodology is permissible.
The primary difference between results comes from the interpretation. The frequentist approach produces an interval

that will contain future shots with probability 1 − 𝛼, where probability is typically interpreted in the sense of long-run fre-
quencies. The Bayesian approach produces an interval that will contain future shots with conditional probability 1 − 𝛼,
representing a subjective “degree of belief.” Both produce an expected coverage 1 − 𝛼, but “expected” is in two differ-
ent senses.
Our simulations showed that the Bayesian approach provided the intended coverage rate in both senses. Though the

simulation was setup to verify the coverage rates according to long-run frequencies, we included the Bayesian approach in
it anyhow. It was somewhat unsurprising to find that, under flat prior distributions, the Bayesian approach produced the
intended frequentist coverage rate. Indeed, in simpler normal models (eg, Ref. [21, p. 301]), Bayesian prediction intervals
have an identical closed-form equation as their frequentist counterpart.
A practical difference between approaches involved the difficulty of their implementation. Fitting the model and esti-

mating prediction regions using the Bayesian approach required far fewer lines of code, and leveraged existing function-
ality from the 𝖲𝗍𝖺𝗇 package18 in 𝖱. Conversely, for the frequentist approach, we had to manually implement the Kenward-
Roger statistic, leading to much more complexity.
The example problem considered a perfectly balanced factorial experiment, but in practice, it is not uncommon to

encounter an unbalanced design. In such a case, the miss distance models will likely suffer from the same issues of multi-
collinearity as typical linear models. As multicollinearity worsens, deciphering significant factor effects from one another
may become difficult. As an additional note about the experimental design, the example only employed categorical factors,
but the models can readily accommodate continuous factors as well.
Future work may consider more complex variance structures for the bivariate miss distance model. By allowing the 𝑥-

and 𝑦-component variances to differ and the 𝑥- and 𝑦-component covariance to be nonzero, the prediction regions could
take the shape of a rotated ellipse. This flexibility may lead to a better fitting model in certain cases. Other work could
investigate the possibility of constructing circular tolerance regions, perhaps using the Kenward Roger’s statistic or an
alternative test statistic.
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APPENDIX A: KENWARD-ROGER APPROXIMATION
Kenward and Roger approximate the distribution of 𝐹 as

𝐹 ∼ 𝜆𝑙,𝑚, (A1)

where𝑙,𝑚 is the𝐹-distributionwith 𝑙 numerator degrees of freedomand𝑚 denominator degrees of freedom. The parame-
ters 𝜆 and𝑚 are calculated after the data are collected, and are dependent on that data. The calculation of these parameters
is somewhat involved. For completeness and because the “remlscore” 𝖱 function does not implement the Kenward-Roger
test, we include the equations below:

𝜆 =
𝑚

𝐸[𝐹](𝑚 − 2)
, (A2)

𝑚 = 4 +
𝑙 + 2

𝑙𝑔 − 1
. (A3)

The calculation of 𝜆 and𝑚 depends on the following equations:

𝑔 =
Var[𝐹]
2𝐸[𝐹]2

, (A4)

𝐸[𝐹] = 1 +
𝐴2

𝑙
, (A5)

Var[𝐹] = 2

𝑙
(1 + 𝐵), (A6)

𝐵 =
1

2𝑙
(𝐴1 + 6𝐴2), (A7)

𝐴1 =

𝑟∑
𝑎=1

𝑟∑
𝑏=1

𝑊𝑎𝑏tr(𝚯𝚽𝑷𝑎𝚽)tr(𝚯𝚽𝑷𝑏𝚽), (A8)

𝐴2 =

𝑟∑
𝑎=1

𝑟∑
𝑏=1

𝑊𝑎𝑏tr(𝚯𝚽𝑷𝑎𝚽𝚯𝚽𝑷𝑏𝚽), (A9)

𝚯 = 𝑳
(
𝑳′𝚽𝑳

)−1
𝑳′, (A10)

𝑷𝑐 = 𝑨′ 𝜕𝚺
−1

𝜕𝜸𝑐
𝑨, (A11)

where 𝑊𝑎𝑏 is the element corresponding to the 𝑎th row and 𝑏th column of the variance-covariance matrix of 𝜸̂ . The
remlscore function outputs this variance-covariance matrix. 𝛾𝑐 is the 𝑐th element of 𝜸 = [𝛾1, … , 𝛾𝑟]

′.
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