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Executive Summary 

Modeling and simulation (M&S) outputs help the Director, Operational Test and 
Evaluation (DOT&E), assess the effectiveness, survivability, lethality, and suitability of 
systems.  DOT&E desires the same degree of understanding and confidence in M&S 
outputs as in live test results; that is, models and simulators must be sufficiently verified 
and validated.  Verification and validation (V&V) is a rigorous process that DOT&E has 
sought to improve since 2016 through policy, training, and methodological advancements 
(DOT&E 2016, 2017; Haman et al. 2022; Wojton, Avery, Freeman, et al. 2019; Wojton, 
Avery, Yi, et al. 2021). 

This paper’s purpose is to improve the state of V&V methods applied inside and 
outside the testable region1 by recommending and demonstrating a set of statistical 
techniques—metamodels (also called statistical emulators)—to the M&S community.  In 
2017, DOT&E recommended that M&S evaluators use metamodels to understand M&S 
outside the testable region of the operational space. 

A metamodel can accurately summarize the output of M&S, thus allowing model and 
system experts to better compare M&S with their subject matter expertise.  Metamodeling 
thus combines subject matter expertise and model expertise, allowing experts to make 
judgments about the M&S in the most difficult modeling conditions.  In short, a metamodel 
helps experts discover implausible M&S predictions.  We expand upon DOT&E’s existing 
guidance about metamodel usage by creating methodological recommendations the M&S 
community could apply to its activities. 

While an M&S environment aims to emulate a live test, a metamodel aims to emulate 
an M&S environment.  The advantages of a metamodel are numerous since they are: 

1. Fast, 

2. Portable, 

3. Amenable to uncertainty quantification, and 

4. Easier to understand than the M&S environment itself. 

That said, metamodels will never render M&S environments or live testing obsolete.  
M&S environments are developed based on the physics and logic of the phenomenon being 
modeled.  Metamodels are statistical fits with no understanding of why the outputs they 
were fit with emerged the way they did; they simply make predictions, matching what was 

                                                 
1 The testable region is the region of the operational space for which evaluators have both live data and 

simulation outputs for comparison. 
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observed from an M&S environment.  And since metamodels ultimately are derived from 
M&S environments and M&S environment outputs are not interchangeable with live test 
data, metamodels (being a surrogate of a surrogate) will never replace live testing either. 

Metamodeling Techniques 
Metamodeling is a methodology for analyzing, understanding, verifying, and 

validating M&S environments.  A metamodel attempts to summarize output from an M&S 
environment with a statistical fit that interpolates or smooths the M&S output, essentially 
changing a complex computer simulation into a mathematical formula. 

While an M&S environment usually is computationally complex, a metamodel 
generally is smaller and portable.  The metamodel is a way to make conclusions about the 
M&S environment, as it summarizes the observed M&S outputs and predicts outputs at 
unobserved points.  This summarization and prediction help check whether M&S outputs 
appear plausible and help identify an M&S environment that produces obviously incorrect 
outputs. 

M&S environments vary widely in nature and implementation, and knowing how an 
M&S environment works is essential for analyzing its output and properly constructing 
metamodels for it.  In our metamodeling framework, an important determinant of the 
statistical strategy is stochastic noise, or variation in the outcomes of an experiment such 
that no two runs of the experiment are identical or are identical only when using a common 
random seed. 

We split M&S output based on whether the response variable of interest is 
deterministic or stochastic and discrete or continuous.2  We make the following 
recommendations: 

• For a deterministic, discrete response variable (e.g., threat classification or 
missile firing doctrine), we recommend nearest neighbor or decision tree 
interpolators.  These interpolators are flexible enough to work in a wide variety 
of circumstances.  Decision trees, in particular, may be dense but might be 
human readable. 

• For a deterministic, continuous response variable (e.g., threat radar cross-section 
of a digital threat model), we recommend Gaussian process (GP) interpolation.  
This yields a mathematical function that connects observed M&S outputs and 
makes predictions at unobserved conditions based on observed outputs while 
accompanying those predictions with uncertainty estimates. 

                                                 
2 A deterministic response has no random variation, while a stochastic response varies when the M&S 

environment generates output under identical conditions. 
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• For a stochastic response variable (either continuous or discrete, such as whether 
a threat was engaged or the range at which a threat was engaged), we 
recommend a generalized additive model (GAM).  This statistical modeling 
framework works in many contexts and can yield flexible but also human-
interpretable fits. 

Evaluating Metamodel Fits 
All of the techniques described above include many options for fitting a metamodel 

to M&S output.  Analysts need M&S outputs to help them decide which of those options 
to use when estimating a metamodel.  Broadly speaking, a metamodel needs to describe 
M&S outputs well, and metamodeling choices need to facilitate a good description of the 
M&S environment. 

A well-calibrated metamodel makes predictions that generally match M&S 
environment outputs.  We observe some M&S outputs and use those outputs for estimating 
a metamodel.  A model that closely matches outputs already observed—known as 
in-sample outputs—is not good enough; the metamodel needs to describe hypothetical 
unobserved outputs—known as out-of-sample outputs—well too.  We recommend using 
output splitting techniques that use only some of the available M&S outputs for model 
fitting and that use other outputs to evaluate the metamodel’s predictive performance for 
data not involved in fitting.  One should plan the use of such techniques prior to generating 
M&S outputs, and any design of experiments (DOE) plan for collecting M&S outputs 
should accommodate such techniques.  We more precisely define model quality using 
metrics that either describe how much metamodel predictions deviate from observed 
outcomes or state how likely the outputs would be given the metamodel we fitted.  
Visualizations such as calibration plots show the relationship between predicted values 
and outputs. 

If our metamodel assessment metrics remain consistent between training, screening, 
and evaluation sets, we can rely on its predictions; otherwise, the metamodel may be 
overfitting M&S environment outputs, meaning that it mostly repeats outputs observed in 
the training set without learning the larger patterns of the M&S environment it needs to 
emulate.  The metamodel may also simply fail to make precise predictions—a phenomenon 
known as underfitting—though we do the best we can when working with the training set 
for a metamodel to make precise predictions without overfitting.  If we are satisfied with 
the precision of the metamodel’s predictions and if we observe no evidence of overfitting 
as we evaluate the model’s performance with observations not used directly for fitting, we 
may declare the metamodel a sufficient representation of the M&S environment and use it. 
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In summary, we recommend: 

• Using statistical metrics to assess a metamodel’s ability to match observed M&S 
outputs; 

• Using said metrics to make choices for estimating metamodels based on a 
resulting metamodel’s ability to predict out-of-sample M&S outputs, as 
estimated by cross-validation and output splitting; 

• Using visualizations to present the relationship between metamodel predictions 
and M&S outputs; 

• Checking whether candidate metamodels overfit the training outputs by 
checking the metamodel’s performance with screening and evaluation sets; and 

• Accommodating data splitting in any plan to collect M&S observations for 
metamodel estimation. 

Experimental Designs for Metamodeling 
Metamodels require the collection of M&S outputs before a metamodel can be fit; 

DOE should guide output collection.  We divide DOE into two classes: parametric DOE 
and space-filling designs (SFDs).  Parametric DOE consists of DOE methodology designed 
for parametric regression metamodeling, including linear statistical models.  SFDs place 
design points in such a way that the factor space is “filled” with points and the designs are 
model independent. 

Many designs for parametric statistical metamodels use design points selected to 
produce good statistical properties in the fitted metamodels.  Simple linear statistical 
models may prefer points near the edges of the factor space since the edges often are the 
best locations for placing points; such points minimize the statistical error of the metamodel 
coefficients. 

SFDs do not attempt to be good for a specified model and instead try to explore the 
whole factor space.  They are agnostic to the statistical methods planned, which leads to 
designs that should work well for the more flexible statistical fitting techniques 
recommended in this paper. 

Both approaches have advantages and disadvantages, and the type of study dictates 
which approach is more appropriate.  We make the following recommendations: 

• In situations where variation in outcomes makes estimating effects difficult, 
statistical error is the biggest concern; parametric DOE should be used, such as 
D-optimal designs that attempt to minimize estimation error in the metamodel’s 
parameters. 
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• In situations where variation in outcomes either does not exist or does not make 
discovering relative effects too difficult, we can tackle statistical model 
uncertainty using SFDs.  In addition to the designs mentioned in Wojton, Avery, 
Yi, et al. (2021), we have another recommendation—the MaxPro design.  This 
design sufficiently spreads points throughout the design space, ensures that all 
factors are adequately covered even if other factors are ignored, and can 
economically handle both categorical and quantitative factors.  The MaxPro 
design can be used in instances where Wojton, Avery, Yi, et al. (2021) 
recommend the sliced Latin hypersquare design (SLHD), but when creating 
slices for all combinations of categorical factors would result in unreasonably 
large sample sizes to execute. 

Software for Metamodeling 
Many statistical software packages can estimate the metamodels we recommend and 

generate appropriate DOEs.  JMP and JMP Pro can fit generalized linear statistical models, 
GP models, decision trees, and nearest neighbor interpolators and can make some DOEs.  
The free and open-source statistical software R can estimate every metamodel featured in 
this paper, and it was the software actually used in the paper’s example analysis of a paper 
airplane flight simulator.  R can also generate SFDs we recommend.  In particular, we 
recommend the R package mgcv for estimating GAMs, GPfit for estimating GPs, and the 
SLHD or MaxPro packages for generating SFDs with both categorical and quantitative 
factors. 

All our recommended techniques, from data collection to model fitting and 
evaluation, are demonstrated in this paper for a toy M&S environment simulating the flight 
paths of paper airplanes.  The simulator runs on a common laptop, has no distribution 
restrictions, is relatively easy to use, and should be easily understood (most readers have 
likely thrown a paper airplane).  This paper is accompanied with R code that runs the data 
example. 
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1. Introduction

Metamodeling is a methodology for analyzing, understanding, verifying, and 
validating modeling and simulation (M&S) environments.  A metamodel (also called a 
statistical emulator) summarizes M&S output with a statistical fit that interpolates or 
smooths the M&S output, essentially changing a complex computer simulation into a 
mathematical formula (see Figure 1-1).  The metamodel’s purpose is to help M&S 
stakeholders understand the M&S output, quantify the uncertainty in the M&S predictions, 
and be a useful product in and of itself in contexts where the M&S cannot be used 
practically, either because of time or accessibility. 

Figure 1-1.  A hypothetical metamodel for an M&S environment with a stochastic (i.e., 
random) response variable depending on a single factor.  The metamodel estimates the 

mean value of the response variable depending on the factor, with the estimate 
accompanied by a pointwise confidence interval shown as a shaded region;  

for any selected factor level, the upper and lower bounds of the shaded region  
represent the confidence interval for the mean response at that factor level. 

While an M&S environment usually is computationally complex, a metamodel 
generally is smaller and portable.  For example, the Navy’s Environment Centric Weapons 
Analysis Facility (ECWAF) is a hardware-in-the-loop M&S environment for simulating 
torpedo performance.  It consists of multiple computers, filling a large room, that run in 
real time while connected to a torpedo’s motherboard; some computers are dedicated to 
calculating underwater sound trajectories.  One could completely describe in a short email 
a fitted logistic regression statistical metamodel predicting hit probabilities based on 
ECWAF outputs. 
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The Director, Operational Test and Evaluation (DOT&E), considers M&S output in 
addition to live testing when assessing the effectiveness, suitability, survivability, and 
lethality of many systems under their oversight.  The Institute for Defense Analyses has 
published recommendations for generating experimental designs to statistically study 
M&S environments (Wojton, Avery, Yi, et al. 2021).  These recommendations help the 
operational testing community meet the guidance set by DOT&E, who stated that M&S 
verification, validation, and accreditation should “articulate a method for strategically 
varying the factors that affect system performance with respect to the response variables 
of interest” (DOT&E 2016, p. 3). 

Wojton, Avery, Yi, et al. (2021) describe how to collect data from M&S 
environments but do not describe how to analyze that data beyond direct comparison.  And 
Wojton, Avery, Freeman, et al. (2019) mention metamodels but do not describe them fully. 
DOT&E issued follow-on guidance stating that “empirical models (a.k.a., emulators or 
metamodels) should be used to understand M&S outcomes across the operational space 
and assist in the uncertainty quantification in areas where there are no live data” (DOT&E 
2017, p. 1).  Since the publication of that guidance, other documents have been published 
recommending the use of metamodels, such as OPTEVFOR Instruction 5000.1D 
(Commander, Operational Test and Evaluation Force 2022), which requires that M&S 
analysis “statistically analyze the V&V runs, identify factor effects, and generate an 
empirical metamodel of the M&S predictions when possible.” 

The metamodel is a way to study the M&S environment by directly modeling outputs. 
For example, if one wants to use M&S to find conditions that optimize a system’s 
performance, or to determine what model parameters best replicate live test data, one can 
use a metamodel of the M&S environment instead of the M&S environment directly 
because the metamodel is much smaller, faster, and easier to manipulate.  Hence, those 
working with M&S environments should be able to fit high-quality metamodels. 

The present paper is a follow-on to Wojton, Avery, Freeman, et al. (2019) and Wojton 
Avery, Yi, et al (2021), and it specifies statistically rigorous methods for metamodeling. 
This paper describes: 

• M&S environments and what one should consider when fitting their output with
a metamodel;

• The goals of metamodeling, as well as appropriate and inappropriate uses of
metamodels; and

• A handful of recommended metamodeling techniques, evaluation criteria, and
experimental design approaches.
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We split M&S output based on whether the response variable of interest is 
deterministic (with no random seed3) or random (deterministic up to a random seed), and 
we make the following recommendations: 

• For a deterministic, discrete response variable, we recommend nearest neighbor
or decision tree interpolators.

• For a deterministic, continuous response variable, we recommend Gaussian
process interpolation.

• For a stochastic response case (either continuous or discrete), we recommend a
generalized additive model (GAM).

We demonstrate our recommended models and their evaluation using a notional 
example of a paper plane flight simulator, a digital simulation analyzed as both a fully 
deterministic simulation and a stochastic simulation. 

This paper is a starting point, setting an expectation of what good metamodeling looks 
like.  While we offer recommendations, entire books have been written that present 
alternative techniques and perspectives.  Hastie et al. (2009) in particular offer many 
statistical procedures one can use for essentially the same purpose.  We cannot be as 
comprehensive in less than 100 pages.  Nevertheless, our paper presents a standard for 
good metamodeling practice.

3 A random seed is an important part of what allows a computer to emulate randomness.  Computers 
usually generate pseudorandom numbers in lieu of truly random numbers; truly random numbers are 
impossible for logical systems like computers to generate.  Pseudorandom numbers are generated from 
a complex mathematical process, and if one knows the first number in the process, one can perfectly 
predict the rest of the numbers.  This first number is the random seed.  When one doesn’t know the first 
number, the sequence presents an illusion of randomness usually sufficient for statistical purposes.  
Many M&S environments include pseudorandom number generation as part of the model; some, such 
as hardware-in-the-loop simulations (including the ECWAF), also feature true randomness because the 
physics of communication between multiple computers involves real-time calculations sensitive to even 
small perturbations. 
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2. Classes of M&S Environments

M&S environments vary widely in nature and implementation, and knowing how an 
M&S environment works is essential for analyzing its output and properly constructing 
metamodels for it.  In our metamodeling framework, an important determinant of the 
statistical strategy is stochastic noise, or variation in the outcomes of an experiment such 
that no two runs of the experiment are identical or are identical only when using a common 
random seed.  Some M&S environments are noiseless or deterministic, such that running 
the M&S environment under the same initial conditions will yield the same output. 
Only mathematical and computer models can be noiseless in practice, restricting this class 
of M&S to digital simulation (DSIM), hardware-in-the-loop (HITL), or software-in-the-
loop (SITL). 

M&S environments with some randomness are called stochastic, regardless of 
whether that randomness arises naturally in the simulation or from a random seed.  One 
usually analyzes outputs from these environments with statistical fits.  What type of 
statistical fit to use depends on how much variation there is in outputs, how much data we 
can collect, and what phenomena we wish to detect. 

If few M&S outputs can be generated and if outputs vary considerably under common 
input conditions, we may not be able to detect subtle phenomena, as the variation in the 
outputs has too pronounced an effect.  Operational tests usually have these characteristics; 
for example, missile tests are expensive on a per-run basis and require significant 
manpower to execute, and run results can vary considerably despite similar conditions. 
Statistical methods likely cannot detect subtle phenomena, such as the difference between 
a linear and a not-quite-linear relationship between miss distance and range to threat, under 
these conditions.  We call such situations low signal-to-noise ratio (SNR) situations, and 
they are handled best by relatively simple statistical fits, such as some form of linear 
statistical model. 

If either the variation in outputs is low or the sample sizes are large enough that such 
subtleties can be detected with confidence, we can estimate statistical fits able to capture 
such nuances.  Such situations are high SNR situations.  For example, the Institute for 
Defense Analyses developed the Virtual Carrier Model (IVCM), a DSIM for studying the 
relationship between the reliability of systems onboard the aircraft carrier USS Gerald R. 
Ford (CVN-78) and the carrier’s sortie generation rate.  IVCM can generate thousands of 
outputs within a reasonable time frame.  Thus, it can mostly overcome the variation in the 
simulation to allow fitting metamodels less prescriptive about the relationship between 
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factors and response variables than linear statistical models; other M&S environments 
similarly allow a far larger number of runs, presenting opportunities to estimate more 
nuanced, less prescriptive statistical fits. 

Table 2-1 is a nonexhaustive list of common simulation classes encountered in the 
Department of Defense. 

Table 2-1.  Some Simulation Environments Used to Support Operational Testinga 

Simulation 
Environment Acronym Description 

Digital Simulation DSIM 
A fully digital representation of a physical system and its 
intended operational environment.  Can be deterministic 
or stochastic. 

Hardware-in-the-Loop HITL 
A simulation that includes actual physical system 
hardware.  Can be deterministic or stochastic but often is 
stochastic because of the architecture of such simulations. 

Software-in-the-Loop SITL A simulation incorporating actual physical system software.  
May be deterministic or stochastic. 

Operator-in-the-Loop OITL A simulation that includes inputs and decisions from at 
least one operator.  Highly stochastic. 

Natural Model NM 

A model that represents a system by another system that 
exists in the real world; for example, a model that uses one 
body of water to represent another.  Highly stochastic, as 
natural models essentially are a form of live testing. 

Physical Model PM 

A model whose physical characteristics resemble the 
physical characteristics of the system being modeled; for 
example, a plastic or wooden replica of an airplane, or a 
model of a human body filled with sensors to detect likely 
injury.  Likely involved in highly stochastic situations. 

Land-Based  
Test Facility LBTF 

A physical environment, constructed on an open range, 
that incorporates various aspects of DSIM, HITL, SITL, 
OITL, or live test assets. 

Laboratory/Chamber LAB 
A facility allowing for simulation via DSIM, HITL, SITL, or 
OITL of various aspects of an operational system in a 
closed environment. 

Threat Representation TR 
Any engineering representation (physical or digital) of a 
threat system or environment.  If physical, should be seen 
as stochastic. 

C4I System 
Integration 

Environments and 
Facilities 

C4IEF 

A command, control, communications, computers, and 
intelligence (C4I) environment that operates external to the 
system under test or the system of systems and that can 
be used to test system functionality and interoperability.  
May be deterministic or stochastic. 

Reliability Simulation RSIM 

A simulation that provides reliability predictions to 
represent the system under test live or in captive-carry 
tests, chamber tests, or DSIM.  Could be deterministic or 
stochastic. 
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Simulation 
Environment Acronym Description 

Federation N/A 

A distributed system of interacting models, simulations, 
and supporting infrastructure that are based on a common 
understanding of the objects portrayed in the system of 
systems.  If these connecting models are all DSIMs, the 
randomness of the federates would propagate to the 
federation, but if live communication of hardware or human 
interaction is involved, at least some stochasticity may 
emerge. 

Federate N/A 
An individual system within a federation, such as a 
simulation, a tool, or an interface to live systems.  May be 
deterministic or stochastic. 

a See M&S Glossary (Defense Modeling and Simulation Enterprise 2020) and OPTEVFOR Instruction 
5000.1D (Commander, Operational Test and Evaluation Force 2022). 

 
The high SNR context interests us more in this paper than the low SNR context.  One 

may discover that a simple linear fit still describes the outputs of an M&S environment 
well in the high SNR situation, but the data collection and analysis should at least allow 
the opportunity to discover unanticipated relationships and effects.
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3. Goals and Appropriate Uses  
of Metamodeling 

We view metamodeling as an activity that increases the impact of M&S environments 
in test and evaluation and perhaps throughout the defense community.  Table 3-1 
summarizes how metamodels could be used in different activities commonly undertaken 
across the defense enterprise. 

Table 3-1.  Potential Uses of Metamodeling in Defense Activities 

Activity Metamodel Usage 
M&S 

Verification, 
Validation, and 
Accreditation 

(VV&A) 

Can be used to determine whether outcomes observed from live data are 
consistent with M&S predictions, or to see whether M&S predictions are 
reasonable at face value given subject matter experts’ understanding of the 
system being modeled.  Predictions that are clearly wrong to an expert indicate a 
bad M&S environment even if no live data were collected. 

Test Planning 
Suggests system performance in the factor space and what regions may be most 
interesting to test.  Useful for test scoping by facilitating power analysis and the 
study of VV&A sensitivity. 

Predicting 
System 

Performance 

If a metamodel matches both an M&S environment’s outputs and a system’s live 
data, the metamodel predicts the system’s performance as a function of the 
studied factors. 

Exercise 
Planning and 

Training 

Suggests system performance in the factor space and what regions may be most 
interesting for exercises and training.  If appropriate, may be used to simulate live 
outcomes. 

M&S Creation 
and Execution 

Can act as a purely digital surrogate for one M&S that operates as a component 
of another M&S, thus effectively allowing one model’s output to inform another 
model.  This link can overcome obstacles that otherwise would prevent one 
model from informing another, such as speed, availability, expense, location, etc. 

Discrete Event 
Simulation / 

Agent-Based 
Modeling 

Can be a part of a discrete event simulation (DES) or an agent-based model 
(ABM) that effectively allows the outputs of a different M&S environment 
dedicated to understanding one of the modeled entities to describe the behavior 
of that entity as a part of the DES or ABM.  DESs/ABMs are a class of M&S. 

Campaign 
Analysis 

Can be a part of a campaign model by allowing the use of outputs of an M&S 
environment dedicated to describing the performance of a weapon system, 
sensor, platform, etc. to inform the behavior of that entity in the campaign model.  
Campaign models are DSIMs, often DESs.  Using the DES STORMa as an 
example, a metamodel fit using ECWAF outputs could be used to determine 
whether a torpedo fired from a submarine hit its target in the simulation. 

Wargaming Can act as a fast and inexpensive outcome adjudicator informed by an M&S 
environment that otherwise would be too unwieldy to use in a live setting. 
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Activity Metamodel Usage 

Tactical 
Planning 

Can leverage otherwise inaccessible or untimely M&S predictions to quantify 
risks and suggest the likelihood of outcomes for different courses of action when 
timely information is needed.  For example, a metamodel of a weapon system 
could predict its performance characteristics in wartime, informing warfighter 
decision-making. 

M&S 
Calibration 

A method for leveraging observed data to inform parameter selection for any 
needed but unknown parameters in an M&S environment to ensure the M&S 
best mimics observed outcomes. 

Parameter 
Estimation 

Transforms M&S into a model that can be used to infer and quantify uncertainty 
for parameters describing observed data via model calibration. 

a STORM is the Synthetic Theater Operations Research Model for campaign modeling, involving primarily 
air and naval assets. 

 
M&S environments aim to realistically reproduce live phenomena in computer 

environments or to model a particular piece of a live test, such as a threat.  Unfortunately, 
high-fidelity models are often large, slow, expensive, unwieldy, nonportable, and 
intractable, making them unsuitable for direct use in some activities.  Also, usually only 
the M&S owners and maintainers can access an M&S environment and run it.  Metamodels 
extend the influence of the high-fidelity models to other contexts by statistically 
summarizing their outputs and substituting for the high-fidelity model when it cannot be 
practically deployed. 

Model validation seeks to determine the extent to which live data and simulation 
outputs agree, and—as noted by DOT&E (2017)—metamodeling can be part of the 
validation process.  Because metamodels predict the outcome of the simulation, one can 
compare live data to metamodel fits to check for agreement.  Building a metamodel is an 
intermediate step to M&S validation, and it is a component of M&S verification. 

M&S results need to be distributed in a useful and digestible format.  Having a 
“pocket” model that quickly works on a basic laptop can be useful in many instances.  The 
pocket model can aid in planning live testing by identifying interesting regions of low 
operational performance or regions where performance is sensitive to other factors.  If the 
model is trustworthy, it can be used in wargaming to aid decision-making or in the field to 
inform tactical decisions.  Metamodeling does not, on its own, prove an M&S environment 
makes accurate predictions, but it can help reveal an unsuitable M&S environment. 

Importantly, a metamodel can be used to describe M&S output across the entire 
operational domain for which the M&S will be accredited (DOT&E 2017) and to describe 
how much variation to expect in the M&S outputs.  Such fitting is useful because it is never 
the case that live data are available across the full domain of operational conditions to 
validate an M&S environment.  Metamodels summarize M&S environment outputs over 
the space and thus allow subject matter experts to determine whether the M&S environment 
is performing nominally well. 
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A metamodel’s simpler representation of a full M&S allows activities that otherwise 
may not be feasible.  For example, a metamodel can be used to select conditions under 
which optimal performance for the phenomenon under study can be achieved.  The 
metamodel can allow model calibration, which is selecting parameter values that lead to 
M&S output that best mimics the real-world phenomenon being modeled (Smith 2014).  
The model calibration problem can be reformulated into a statistical parameter estimation 
problem, turning the M&S environment (via the metamodel) into a complex statistical 
model and thus allowing us to estimate the real-life value of that parameter from a data set; 
granted, one takes the leap of faith that the M&S environment (and its companion 
metamodel) reasonably represent reality.  These calibration practices also come with 
statistical uncertainty procedures. 

Metamodels do not eliminate the need for live data, and they do not render the 
original M&S obsolete either.  Metamodels are statistical summaries of M&S outputs.  
They do not incorporate the physics or logic of the phenomena being modeled; at best, they 
imitate the outputs observed from an M&S environment with such understanding.  
Metamodels do not generate “runs for the record” but describe what was seen in actual runs 
for the record from the M&S environment.  Situations where the original M&S 
environment is still needed include generating new outputs in situations not used in 
metamodel fitting or evaluating the effects of changes to the modeled system (e.g., missile 
guidance software). 
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4. Recommended Methods for Metamodeling 
Deterministic Simulations 

Deterministic M&S environments should be analyzed differently than stochastic 
simulations.  Output generated by deterministic M&S environments has no random noise 
component.  Hence, there is no need to use methods that extract signal from noise, the 
typical problem statistics addresses.  Instead, one should employ interpolation (i.e., 
connecting observations), which presumes that the values of the response variable under 
new and unobserved conditions either are identical to or very near the values observed 
under conditions most resembling those of the unobserved response; thus, interpolation 
predicts a value for a response that is between the values of its closest neighbors in the 
M&S output data set.  This practice is distinct from statistical regression techniques, which 
presume there is random variation in the outputs that needs to be smoothed away.  If the 
interpolator is given the input conditions under which an M&S output was observed, the 
interpolator will return that output exactly;4 in contrast, a regression model almost never 
parrots original data. 

What method to use for interpolation depends mostly on whether the response 
variable is discrete or continuous.  If it is discrete (such as the classification of a threat or 
the number of threat missiles detected), a decision tree or nearest neighbor model is most 
appropriate.  If it is continuous (such as the terminal range of a ballistic missile or radar 
signal emulator), we recommend Gaussian process (GP) interpolation. 

GP interpolation requires the analyst to make some decisions after collecting data—
in particular, choosing a family of covariance kernels to specify the shape of the 
interpolating function.  Then, the analyst has to determine the values of any remaining 
needed parameters for achieving the best possible interpolation of the outputs.  But once a 
GP is fitted, confidence bounds can be computed to describe the uncertainty associated 
with the GP’s predictions of a response variable’s values.  These confidence bounds are a 
GP’s primary attractor. 

                                                 
4 Some interpolators do not return original outputs exactly but only because the interpolator may be 

easier for a computer to fit if a small error is allowed, not because of a statistical assumption that the 
value observed is perturbed by random noise. 
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A. Metamodels for Discrete, Deterministic Output 
Discrete data are data that take values from a list.  For discrete and nonrandom 

responses, we need to classify our data and find rules to perform that classification.  
Classification methods can be used here, such as nearest neighbor classifiers or decision 
trees.  Hastie et al. (2009) discuss these interpolators in more detail. 

1. Nearest Neighbor 
A nearest neighbor interpolator predicts an output identical to the nearest observed 

output, reducing the prediction problem to figuring out which of the observed test points is 
nearest to the inputs.  The advantage of the nearest neighbor interpolator is that it is simple 
to compute, simple to understand, and yields low-bias predictions. 

The method is nonparametric; there is no parametric statistical theory explaining why 
nearby points are what we should use to make predictions.  We simply believe that the 
response surface is largely continuous and that nearby points have similar values, so we 
should make predictions that agree with what is nearby. 

2. Decision Tree 
A decision tree is a sequence of nodes in a graph that asks a series of true or false 

questions; depending on the answers, one follows different branches of the tree.  At the end 
of the tree is the predicted value of the response variable based on the decisions made.  Like 
the nearest neighbor algorithm, decision trees perfectly predict the outcomes observed in 
the M&S environment’s outputs, but they do so without having to reference the entire data 
set every time a prediction is requested. 

Furthermore, a decision tree is more understandable than a nearest neighbor 
interpolation, so it is an effective way to summarize M&S output.  Figure 4-1 shows 
decision tree predictions, and Figure 4-2 presents an example decision tree. 

Figure 4-1 illustrates nearest neighbor and decision tree interpolations for a fictitious 
M&S environment predicting whether a large gun with two models (the Mk 1 and Mk 2) 
firing a shell at some initial velocity and some initial angle of elevation (shifted and scaled 
to be between 0 and 1) will hit its target.  Angle of elevation and velocity are continuous 
factors while the gun model is a categorical factor.  Colored regions denote the outcomes 
predicted by these two models for the factor combinations.  Both fits make the same 
predictions for the M&S environment’s observed outputs (seen at the marked points in the 
plots, with color corresponding to the observed response), but they make different 
predictions in the intermediate space.  The decision tree generates rules and boundaries for 
making its predictions while the nearest neighbor interpolator bases its predictions on 
distance to the nearest point in the observed data set; hence, the irregularity of the latter’s 
predictions stems from the irregularity of the observed data set. 
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Figure 4-1.  Visualizations of fits by a nearest neighbor (top) and a decision tree (bottom) 
for a deterministic M&S predicting whether a fictitious gun of two types (Mk 1 and Mk 2) 

will hit its target depending on initial velocity and angle of elevation.  Actual M&S 
observations are marked with points, and the color of the region a point lies within is the 
output observed.  Notice that despite the differing shapes of the regions in the top and 

bottom plots, the colored region containing each observed point does not change. 

Figure 4-2 presents the decision tree used for making predictions in Figure 4-1.  To 
read the tree, start from the top node, answer yes or no to the question proposed, and follow 
the resulting path (“yes” to the left, “no” to the right) to either the next node or the final 
prediction.  The diagram includes some supplemental information, coloring based on the 
most common outcome at that level of the tree, reporting the proportion of successes at that 
node’s level in the tree and what proportion of the data set that node covers.  This decision-
making sequence does not require tabulating the entire M&S environment’s outputs, and it 
is more suggestive than the nearest neighbor interpolator about why predictions were made. 
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Figure 4-2.  Visualization of rules of a fitted decision tree for the data given in Figure 4-1.  
The label at the top of a node and the node’s color indicate the most common outcome  

at that node level, and the number below the label indicates what proportion of outcomes 
at that node level are true.  The number inside the node at the bottom is the  

proportion of the data set covered by that node.  Below the node is a statement that  
is either true or false.  To make a prediction, answer the statement; if “yes,”  

follow the left side of the tree; otherwise, follow the right side. 

B. Metamodels for Continuous, Deterministic Output 
We recommend GP interpolation, also known as kriging, for interpolating (or 

connecting) continuous data.  GP interpolation includes a framework for quantifying the 
uncertainty in a response variable, along with all the features one would find in any other 
interpolation method, such as splines and piecewise interpolators (which we do not 
discuss).  However, GP interpolation can be slower than other interpolation techniques.  
Still, GP interpolation may be the most common form of metamodel in all disciplines. 

Our goal with GP interpolation remains predicting the output of the M&S 
environment at unobserved factor combinations using a data set of observed M&S outputs.  
However, because GPs are a type of probability model, we first need to discuss the 
properties of that probability model. 
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1. What Is a Gaussian Process?
A GP model is a probability model describing the distribution of a random function.

It uses a GP to describe the values a partially observed function may take when assuming 
that function was generated by the random process.5  After we estimate a GP given the 
M&S output, we can infer the likely values of the random function at unobserved 
test points, and we can put uncertainty bounds on those predictions.  Since GPs often 
interpolate points with two or more factors, the interpolation is sometimes called a response 
surface; when one plots a two-factor interpolation, it resembles a surface someone 
could touch. 

2. Essential Features of a Gaussian Process
GPs are determined fully by two parameters: the mean function 𝜇(𝑡) and the

covariance kernel (a two-parameter function) 𝐾(𝑠, 𝑡).6  GP interpolation requires picking 
these functions, and the choice strongly affects both the shape of the resulting metamodel 
and its uncertainty calculations. 

In practice, the only interesting choice concerns the covariance kernel 𝐾; the mean 
function is usually chosen to be 𝜇(𝑡) = 0. 

The covariance kernel describes the relationship between any two points of the 
response surface being predicted.  A kernel function needs to take two points as input and 
return the covariance between those two points as output.  Scaling the kernel function 
scales the width of the prediction bands.  The kernel function influences how strongly a 
nearby observed value influences predictions made by a resulting metamodel and its 
smoothness.  Hence, picking the kernel function well matters greatly to the quality of the 
resulting metamodel. 

There are many possible covariance kernels.  Practitioners pick a family of functions 
that describe the covariance kernel of the metamodel, so the difference between two 
members of a common family depends on only a handful of parameters.  Usually, most 

5 Astute readers may be wondering why we are using a probability model involving a random function to 
fit data from a nonrandom, fully deterministic simulation.  We are using GPs as part of a Bayesian 
procedure and thus are adopting the Bayesian perspective on randomness and uncertainty.  In that 
perspective, since we do not know what the M&S environment would do at unobserved conditions, we 
call it random in those conditions.  Consult texts dedicated to Bayesian inference, such as Bernardo and 
Smith (1994), to learn more. 

6 The covariance between two random variables is equal to the product of their standard deviations and 
their correlation; hence, the covariance describes how two random variables are correlated.  The 
covariance kernel gives correlation information about the values of the GP at any two points. 
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covariance kernels used are of the form 𝐾(𝑟), with 𝑟 = ∥𝑠 − 𝑡 ∥ being the Euclidean 
distance between the two points 𝑠 and 𝑡.7 

a. Gaussian Kernel 
For deterministic simulations, we highlight two common families of covariance 

kernel functions.  The most popular kernel is the Gaussian kernel, 𝐾(𝑟; 𝜏, 𝜆) = 𝜏ଶexp(−𝑟ଶ/𝜆), 

where 𝜏 is a scale parameter controlling overall variability in the curve, and 𝜆 is a positive 
number that controls correlation between two points.  For a large 𝜆, two points nearby each 
other would have similar values, while a small 𝜆 means less dependence between two 
nearby points.  Thus, 𝜆 helps control how much wiggle there is in the resulting surface.  
One can think of wiggle as how much the resulting function or surface changes direction.  
A small 𝜆 allows a lot of wiggle while a large 𝜆 encourages smoothness.  The fitted 
GP generated using a Gaussian kernel tends to be as smooth as possible.  Figure 4-3 
illustrates how the Gaussian kernel parameters relate to the shape of the potential functions 
being fitted. 

 
Figure 4-3.  Random realizations of a GP with varying correlation parameter λ.   

A smaller λ implies weaker correlation over larger distances, and an increasing λ strengthens  
that correlation, influencing the resulting wiggle in the curve. 

                                                 
7 Kernels with this property are said to be stationary.  Situations exist where stationary kernels are 

inappropriate—specifically, situations where there is more variation in one region of the factor space 
than in another.  We do not discuss such issues in this introductory paper. 
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b. Matérn Kernel 
Some practitioners believe the Gaussian kernel may be too smooth to be believable.  

Kernels from the Matérn family have the form 

𝐾(𝑟; 𝜏, 𝜆, 𝜈) = 𝜏ଶ ଶభషഌ௰(ఔ) ቆ𝑟ටଶఔఒ ቇఔ 𝑌ఔ ቆ𝑟ටଶఔఒ ቇ, 

where 𝛤 is the gamma function, 𝑌ఔ is the Bessel function of the second kind of order 𝜈, and 𝜈 controls smoothness.8  The Matérn family of kernels resembles the Gaussian family 
described above by setting 𝜈 very big.  Low 𝜈 yields metamodels that are jittery, while 
large 𝜈 yields smooth metamodels.  Figure 4-4 illustrates the relationship between the 
parameters and the resulting function shape. 

 
Figure 4-4.  Random realizations of a GP using the Matérn kernel with different  

roughness (ν) and correlation (λ) parameters.  The Gaussian kernel case (see Figure 4-3) 
can be thought of as the 𝝂 = ∞ case, hence why the realizations with the  

Matérn kernel resemble those of the Gaussian kernel for larger 𝝂. 

                                                 
8 A GP realization with a Matérn kernel has ⌈ν⌉ − 1 continuous derivatives.  For example, setting ν = ହଶ 

would result in GP realizations that have continuous position, velocity, and acceleration. 
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c. Gaussian Processes That Do Not Interpolate M&S Outputs: Nugget Effects 
GP models can be augmented for low-noise M&S outputs.  The augmentation 

involves modifying the covariance kernel function to also incorporate a residual noise, 𝜎ଶ.  
The augmentation also prevents the GP from interpolating.  This residual noise is known 
as a nugget effect. 

Allowing a nugget effect is appropriate when a GP is fitting outputs from a stochastic 
M&S environment; the effect basically allows for “noise” in the data.  However, 
practitioners sometimes allow a nugget effect even for deterministic simulations, when 
ideally an interpolator would connect all observed outputs from the M&S environment.  
Forcing the metamodel to pass through each observation might be too difficult numerically, 
taking too much computer time.  Loosening that requirement slightly might make fitting 
the metamodel easier, at the expense of a tiny bit of error in predictions at observed M&S 
outputs.  Figure 4-5 illustrates what a process with a nugget effect looks like.  Unlike the 
processes seen in Figures 4-3 and 4-4, the process in Figure 4-5 is not a smooth line; rather, 
it has scattered points yet with clear overall trends. 

When two input points are the same, a nugget effect may be added to a kernel function 
by adding a small, positive number.  Mathematically, such a kernel is 𝐾(𝑟) + 𝜎ଶ𝛿(𝑟), 
where 𝛿(𝑟) = 1 when 𝑟 = 0 and otherwise is zero. 

Figure 4-5 presents a realization of a random GP with a substantial nugget effect.  
This illustration better resembles using GPs to analyze output with noise than it does 
allowing for interpolation with small error as described earlier, but the size of the nugget 
effect illustrates how it affects the GP.  Rather than the smooth functions seen in 
Figures 4-3 and 4-4, the data here appear noisy.  Actually, a GP with a nugget effect cannot 
be a smooth function directly, though it could be seen as a combination of an overall 
smooth function and a perturbation of that smooth function at observed sites via random 
noise following a normal distribution. 
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Figure 4-5.  Random Realization of a Gaussian Process Using  

the Gaussian Kernel and with a Nugget Effect 

3. Fitting a Gaussian Process Interpolator 
It is easiest to start by describing the M&S outputs in pairs.  Let 𝑥௜ and 𝑥௝ be the 

factor settings at which outputs 𝑦௜ and 𝑦௝ are observed.9  Let 𝛴௡ be the covariance matrix 
for the metamodel’s prediction at the observed factor settings, with the element in row 𝑖 
and column 𝑗 of the matrix, 𝛴௡௜௝, being equal to the value of the covariance kernel 𝐾 given 
the distance between the factor settings 𝑥௜ and 𝑥௝, so 𝛴௡௜௝ = 𝐾൫∥∥𝑥௜ − 𝑥௝∥∥൯.  Let 𝑌௡ be the 
vector consisting of outputs 𝑦ଵ, … ,𝑦௡. 

Unless a nugget effect is added to the covariance kernel, the predicted value of the 
GP interpolator at any observed factor setting combination will be exactly the value of the 
response variable at that test point, with a variance of zero.  However, our goal is to make 
predictions at unobserved factor settings.  Suppose 𝑥ොଵ, … , 𝑥ො௠ are each of the combinations 
of factor settings for which we would like to predict the M&S output.  Let 𝛴෨௠ be like 𝛴௡ 
described above but using 𝑥ොଵ, … , 𝑥ො௠ instead of 𝑥ଵ, … , 𝑥௡.  Let 𝐶௠௡ be a matrix with 𝑚 rows 
and 𝑛 columns such that the value of the matrix in row 𝑖 and column 𝑗 is 𝐶௠௡௜௝ =𝐾൫∥∥𝑥௜ − 𝑥ො௝∥∥൯. 
                                                 
9 𝑥௜ and 𝑥௝ are vectors with length equal to the number of factors, and the factor settings are the vectors’ 

entries. 
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If 𝑌෠௠ is the vector of the new, unobserved M&S outputs, the conditional distribution 
of   𝑌෠௠ given the observed outputs will be a multivariate normal distribution.  The vector 
of means of this normal distribution will be 𝜇̂௠ = 𝐶௠௡𝛴௡ି ଵ𝑌௡.  This vector includes the set 
of predictions for the unobserved M&S output.  The covariance matrix of the distribution 
is 𝛴෠௠ = 𝛴෨௠ − 𝐶௠௡𝛴௡ି ଵ𝐶௠௡ୃ .  This matrix is needed to form confidence bands around the 
predictions. 

Many software packages perform these calculations, including JMP, Python (in 
sklearn), R (in various packages; we use GPfit in our examples, discussed in Section 8), 
and other commercial statistical software packages. 

After one picks a family of covariance kernel (see Sections 4.B.2.a–4.B.2.c, along 
with Section 6 for more general model selection strategies), fitting a GP interpolator to an 
output from an M&S environment depends on between two and four parameters.  Below, 
we describe statistical strategies to pick the values of the parameters. 

a. Frequentist Approach to Parameter Selection 
As mentioned earlier, GPs treat each M&S observation as random and drawn from a 

normal distribution.  The resulting probability model implies we can compute a likelihood 
function.  For a GP model, the likelihood is 

𝐿௡ = (2𝜋𝜏ଶ)ି௡ଶ|𝛴௡|ିଵଶexp ൬− 12𝜏ଶ 𝑌௡ୃ 𝛴௡ି ଵ𝑌௡൰, 
where 𝑌௡ is the observed M&S outputs at 𝑛 observed test points and 𝛴௡ is a 𝑛 × 𝑛 matrix 
that is the covariance matrix evaluated at each of the test points and that depends on 
unknown parameters, as described in Section 4.B.3. 

We can estimate the parameters by choosing parameter values that maximize the 
likelihood function.  Once parameters have been estimated, we can construct interval 
estimates for the output by directly inserting the parameter estimates into formulas 
involving the covariance kernel. 

b. Bayesian Approach to Parameter Selection 
In the Bayesian approach, we pair our likelihood function with a prior distribution 

for the parameters.  In principle, a prior incorporates beliefs about what the parameters 
could be before observing data, but we also can see the prior as encapsulating what we 
want to encourage in a resulting metamodel.  For example, if we use the Matérn covariance 
kernel, smoother functions with few wiggles are usually preferred, suggesting that small 𝜆 
should be avoided unless strong evidence in the data suggests otherwise.  Similarly, small 𝜈 may not be desirable either, as they generate metamodels with few derivatives and are 
thus rough. 
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The parameters of interest generally are positive numbers, so a reasonable prior 
should generate positive random variables.  We may also assume under the prior that these 
parameters are independent.  The prior distribution for the parameters and the likelihood 
function 𝐿௡ can then be combined to obtain the posterior distribution. 
4. Uncertainty Quantification 

As described in Section 4.B.3, GP interpolation, at its core, estimates the conditional 
distribution of a random function given the observations made from an M&S environment.  
This distribution is normal, with mean and variance given by 𝜇̂௠ and 𝛴෠௠.  Further, the 
distribution for the predicted value of the response variable at an unobserved test point is 
normal, with mean 𝜇̂௠ and variance equal to the diagonal entry of the matrix 𝛴෠௠.  One can 
obtain an uncertainty interval by finding the appropriate quantiles of the corresponding 
normal distribution at each factor setting combination involved in the prediction.  For 
example, a 95 percent interval will be about two standard deviations away from the mean 
prediction for each factor setting combination.  Figure 4-6 illustrates how adding 
confidence bands to a GP interpolation describes the uncertainty associated with its 
predictions. 

 
Figure 4-6.  GP interpolation of a common data set with varying covariance kernels.   
From left to right: Gaussian kernel with 𝝀 = 𝟏/𝟏𝟎𝟎; Gaussian kernel with 𝝀 = 𝟏/𝟒𝟎𝟎;  
Matérn kernel with 𝝀 = 𝟏/𝟐𝟓 and 𝝂 = 𝟏/𝟐; and Gaussian kernel with 𝝀 = 𝟏/𝟏𝟎𝟎 and a 

nugget effect with 𝝈 = 𝟏/𝟒.  For all plots, the scaling parameter is 𝝉 = 𝟏/𝟐,  
and 80 percent prediction intervals have been drawn.   

The horizontal and vertical black lines are the 𝒙 and 𝒚 axes, respectively. 

But pulling directly from the normal distribution this way overlooks the procedures 
used to determine the covariance kernel’s unknown parameters and does not yield a full 
accounting of uncertainty.  If we use a Bayesian procedure to describe those parameters, 
we could use Monte Carlo procedures to obtain a confidence band. 

First, we would sample from the posterior distribution of the covariance kernel 
parameters.  Then, we would randomly generate normal realizations from the posterior 
distribution of the response variable at the unobserved test points using the randomly 
sampled covariance kernel parameters.  Doing this many times to generate a distribution 
of the response variables will also account for the selection of the covariance kernel 
parameters. 
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5. Potential Problems with Using Gaussian Process Interpolators 
a. Bounded Response 
GP interpolation assumes no bounds on the potential values of the response, which 

can be problematic for some metamodels.  For example, if the output of an M&S 
environment is predicted probabilities, then a metamodel should return numbers between 
0 and 1. 

The easiest solution is to apply a transformation to the observed output so that the 
transformed value is bounded. 

• For probabilities, we recommend that practitioners use the logit transform, 
log ቀ ௣ଵି௣ቁ. 

• For positive data, such as miss distances or delay times, we recommend that 
practitioners use a log transformation. 

Then, fit a GP to the transformed values.  The link functions for generalized linear 
models in Table 5-3 are also possible transformations.  To obtain predictions in terms of 
the original units, apply the inverse transformation to predicted values, paying careful 
attention when interpreting any related statistics to whether those statistics refer to the 
original or transformed scale. 

b. Categorical Factors 
We assumed factors in the above discussion are continuous, where distance between 

factor settings makes sense.  This is not the case for categorical factors.  When categorical 
factors are in the models, there is not an agreed measure of distance between test points. 

One approach is to generate a separate GP for each combination of the possible values 
of the categorical values.  The results from one combination are completely uninformative 
for an even slightly different combination, which may or may not be desired.  This 
approach can be computationally burdensome.  A lot of data will be needed if one wants 
to be able to put in many combinations of factors. 

It is more computationally tractable to rule out factor combinations using subject 
matter input.  Other techniques could be used to handle categorical factors; see Kang and 
Deng (2020) as an example of what could be done. 
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5. Recommended Methods for  
Metamodeling Stochastic Simulations 

Stochastic simulations, unlike deterministic ones, yield new outcomes each time they 
are run.  Metamodels for such simulations should describe aspects of the M&S output’s 
probability distribution.  Predicting a simulation’s output with such a model usually 
amounts to estimating what the mean behavior will be over the operational space, though 
some methods focus on other aspects of the output’s distribution. 

The recommended tool in the stochastic case is a generalized additive model (GAM).  
Additive statistical models relate the response variable to the factors by adding the effects 
of these factors to the response variable’s average value.  Unlike with fully linear statistical 
models, the relationship between an individual factor and the response variable need not 
be linear, in the sense that changing the value of the factor results in a common change to 
the response that depends only on how much the factor itself was changed.  Instead, 
additive statistical models make loose assumptions about the relationship between the 
factors and the response variable’s average value, and they use a technique called 
smoothing to discover how the relationship between a factor and the response variable 
changes depending on the factor’s value.  Smoothing allows analysts to make weaker 
assumptions in metamodeling about the relationship between the factors and the M&S 
output.  Additive models become GAMs when the response variable is assumed to follow 
some non-normal distribution (such as the binomial distribution for binary outcomes), 
which often means a link function needs to relate the mean of the response variable to the 
additive model. 

Estimating an additive statistical model still requires the analyst to wisely make a 
number of decisions.  The analyst still needs to state the functional form of the relationship 
between the factors and the response, including which factors should have a linear 
relationship, which may have an arbitrary smooth relationship, and which should interact 
and in what way.  Fitting involves selecting parameters controlling how to smooth the data 
to find the relationships between factors and responses and what characteristics the smooth 
relationships should have—for example, whether they are cyclical (a reasonable 
assumption for a factor representing the initial heading of a ship, for example) or 
nondecreasing (such as the relationship between a vehicle’s reliability and the distance its 
platoon travels in a campaign).  The result is statistical modeling useful for prediction and 
inference (including confidence bounds), with more flexibility and generality than 
traditional linear modeling but with much of linear modeling’s interpretability. 
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A. An Introduction to Additive Models 
One perspective on metamodeling M&S system output is finding an appropriate 

smooth for the response surface.  A smooth is a mostly arbitrary function that best fits the 
M&S output over the operational space. 

Smooths can describe the relationship between multiple factors and a single response, 
but the more factors to be analyzed, the more difficult it is to conduct unstructured 
smoothing.  While a smooth over multiple variables may work well, it can quickly become 
statistically and numerically untenable.10  To address this problem, additive models require 
that the response depend on the factors in an additive manner.  For example, if a response 
variable depends on three factors, the corresponding additive model we could fit would be 𝑦 = 𝛼 + 𝑓ଵ(𝑥ଵ) + 𝑓ଶ(𝑥ଶ) + 𝑓ଷ(𝑥ଷ) + 𝜖. 

This model says that the response variable 𝑦 depends on three factors11 via the sum 
of those three factors fed through unknown functions 𝑓ଵ, 𝑓ଶ, and 𝑓ଷ and an intercept term 𝛼, plus the noise term 𝜖.  The modeling objective is to estimate the functions 𝑓ଵ, 𝑓ଶ, and 𝑓ଷ, 
the intercept, and the standard error of the noise term.  The functions are mostly unrestricted 
in their shape.  If we wanted to allow an arbitrary interaction between two factors, we could 
do so with the following model: 𝑦 = 𝛼 + 𝑓ଵ(𝑥ଵ) + 𝑓ଶ(𝑥ଶ) + 𝑓ଷ(𝑥ଷ) + 𝑓ଶଷ(𝑥ଶ, 𝑥ଷ) + 𝜖. 
If we knew that 𝑦 depended on 𝑥ଵ linearly, we could instead fit the model 𝑦 = 𝛼 + 𝛽ଵ𝑥ଵ + 𝑓ଶ(𝑥ଶ) + 𝑓ଷ(𝑥ଷ) + 𝑓ଶଷ(𝑥ଶ, 𝑥ଷ) + 𝜖. 
In this case we would need to estimate 𝛽ଵ, a slope term, rather than an entire function. 

An additive model is a good compromise between a linear model and full smoothing 
over the entire factor space.  And while the univariate or bivariate functions above may not 
admit an easy numerical description, they can be plotted.  As with linear modeling, the 
additive model approach allows for statistical testing to determine what factors affect the 
response variable, what types of relationships exist in the data, and whether there are 
interactions between response variables. 

                                                 
10 Potential problems for such smoothing include the curse of dimensionality, large numbers of categorical 

variables, an inability to incorporate assumptions, and a lack of interpretability. 
11 Note that for ease of presentation in this paper, we briefly change the meaning of the subscript of 

predictors 𝑥 compared to its meaning in other contexts.  Here, different factors have 𝑥 with different 
subscript numbers. 



 

5-3 

Given these advantages, even though GP regression represents a reasonable 
metamodeling approach in general and can be used in the stochastic M&S case, we prefer 
additive metamodels for stochastic M&S prediction. 
1. Estimating Additive Smooths 

The functions in an additive model need to be estimated via smoothing techniques.  
Most smoothing techniques work by estimating the coefficients of a set of basis functions, 
but the smooths could be other functions, even GPs. 

For the sake of simplicity, suppose we wish to fit the model 𝑦 = 𝛼 + 𝑓(𝑥) + 𝜖. 
Requiring ׬ 𝑓௕௔ (𝑥)𝑑𝑥 = 0 ensures the model is uniquely estimable.  This means that all 
functions in the model have an average value of 0 over their domain.  As a result, the 
additive functions are centered around 0.  When working with additive models, one must 
always be aware of identifiability problems, as they are more pernicious than when one 
works with linear models.  Software should handle these issues automatically by imposing 
appropriate constraints, such as the integrate-to-zero constraint. 

Now we discuss function estimation.  We can write the function as 

𝑓(𝑥) ≈෍𝑎௜௞
௜ୀଵ 𝑏௜(𝑥). 

That is, we say that the function is approximately the sum of a finite number of known 
functions, 𝑏௜, each multiplied by unknown constants, 𝑎௜.  The collection of functions 𝑏ଵ, … , 𝑏௞ are referred to as basis functions, and picking these functions is called picking 
the basis for estimation.  Some bases require the selection of knot points, or points 𝑥௝ 
corresponding with each basis function 𝑏௝ such that 𝑓(𝑥௝) = 𝑎௝.  Knot points and knot point 
spacing are yet another fitting consideration that can affect fit quality for such bases, which 
is a nuisance; yet, other considerations (flexibility, ease of computation, etc.) may make 
those bases a good choice regardless. 

Figure 5-1 illustrates common bases and some of their constituent basis functions, 
and Table 5-1 describes the strengths and weaknesses associated with each.  Table 5-1 also 
presents more bases (not all illustrated) one could use. 
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Figure 5-1.  Visualization of a function smoothed using different bases.  The data fitted, 

and the estimated smooth, are shown in black.  Underneath the black line are plots of the 
constituent basis functions used to form the smooth, including the intercept (the red line). 
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Table 5-1.  Bases used in smoothing; see Wood (2017) or Ramsay, Hooker,  
and Graves (2009) for more summaries. 

Basis Characteristics Recommendations Additional 
References 

Cubic Analytically simple to describe and 
thus common.  Requires setting 
knots, with a resulting function 
interpolating the set values at the 
knots and having continuous first 
and second derivatives, thus 
looking smooth.  Not difficult to 
compute or set up.  Mathematically 
proven to be the smoothest 
interpolation. 

The need to specify knot locations 
introduces yet another set of 
parameters that need to be 
determined and can affect fit 
quality, which is not desirable.  A 
common basis nonetheless, and 
acceptable if no other is present. 

Schoenberg 
(1964) 

Cyclic 
Cubic 

Cubic splines where the value and 
all derivatives at the end of the 
input domain are all equal, so that 
the value of the function at the end 
equals the value at the beginning 
along with still being a smooth 
connection. 

Periodic phenomena should be 
modeled with a cyclic function; for 
example, daily average 
temperature over a year should be 
cyclic.  This basis is a reasonable 
choice in such cases. 

Schoenberg 
(1964) 

Duchon A large class of splines that 
includes thin-plate splines as a 
special case. 

Best used for smoothing multiple 
variables in dimensions higher than 
two and where the variables are 
largely the same units.  In 
particular, for smoothing covariates 
over a sphere (such as latitude and 
longitude of satellites orbiting 
Earth), Duchon splines seem to 
fair well. 

Duchon 
(1977) 

Gaussian 
Process 

The individual functions in the fit 
are treated as Gaussian 
processes. 

If one prefers Bayesian 
approaches to inference, this basis 
helps facilitate such inference. 

Matheron 
(1963) 

P-Spline Based on B-splines, but with a 
difference penalty applied to the 
coefficients of the basis elements 
to control their wiggliness.  Retains 
the property of B-splines of being 
mostly zero, making the basis 
extremely easy to set up and 
computationally fast.  Permits 
adaptive smoothing, where not all 
regions of the covariate are equally 
smoothed. 

An easily computed basis that is 
useful in situations where 
computational power is at a 
premium, such as Bayesian 
analysis using Markov chain Monte 
Carlo methods.  Also useful in 
contexts where different levels of 
smoothing are needed for different 
values of the factor being 
smoothed, as evidenced by a 
single smoothing factor seeming to 
fail in some areas; this is known as 
adaptive smoothing. 

Eilers and 
Marx (1996) 
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Basis Characteristics Recommendations Additional 
References 

Thin Plate Handles one or more input 
variables automatically.  Optimal 
basis in the sense that the 
approximation minimizes squared 
error plus a wiggliness penalty, the 
approximation’s squared second 
derivative.  Computationally cheap 
to evaluate.  Does not require knot 
placement.  Constructing the basis 
functions can be more 
computationally demanding than 
constructing the cubic spline basis. 

Reasonable default basis, but if 
lots of basis functions are needed 
for some reason, a cubic basis may 
be better.  For interaction smooths, 
recommended if the inputs are of 
the same scale, such as 
geographic coordinates; if not, 
tensor product smooths may be 
better. 

Duchon 
(1977) 

Polynomial A sequence of polynomials added 
together (when multiplied by 
coefficients).  Very well understood 
basis mathematically, and common 
in statistics.  A very simple basis 
(such as 1, 𝑥, 𝑥ଶ, 𝑥ଷ, …) would have 
numerical problems, so usually an 
orthogonal polynomial basis 
(Chebyshev polynomials, Legendre 
polynomials, etc.) is used instead.  
No need for knot placement. 

If a basis from scratch were 
needed and the knot placement 
problem unappealing, a polynomial 
basis is fine.  In practice though, 
polynomials are more useful as an 
analytical tool than in 
computations. 

Abramowitz 
and Stegun 
(1972) 

Fourier A sequence of sine and cosine 
functions with differing periods.  
Periodic, and does not require 
knots.  Well-known theoretical 
properties. 

This basis is common and a 
reasonable choice if available.  The 
theory associated with the basis is 
also appealing, thanks to the 
relationship with Fourier 
transformations, so if theoretical 
interpretation of the basis itself is 
needed, the Fourier basis may be 
selected.  However, the basis is not 
as flexible as the cyclic cubic basis 
for fewer numbers of basis 
elements. 

Ramsay, 
Hooker, and 
Graves 
(2009) 

B-Spline Like the cubic basis, interpolates a 
series of knots and has continuous 
first and second derivatives, 
resulting in a smooth function.  
Only over a small region is any 
basis element non-zero, meaning 
only a few elements from the basis 
are needed for most computations, 
making the basis representation 
computationally efficient. 

In extreme circumstances where 
computational power is at a 
premium, such as a large-scale 
smoothing problem with lots of 
inputs, this basis can be 
numerically efficient enough to 
work. 

de Boor 
(1978) 
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Basis Characteristics Recommendations Additional 
References 

Cyclic  
P-Spline 

A P-spline basis required to be 
cyclic, or to have equal value and 
continuous derivatives at the ends 
of the function’s domain. 

Used in conditions where a 
P-spline would be used and 
cyclicality is required (situations 
such as time of day, time of year, 
relative bearing, etc.). 

Eilers and 
Marx (1996) 

SCOP-
Spline 

Shape-constrained P-splines 
(SCOP-spline) have additional 
constraints on the shape of the 
resulting function, such as 
requiring that the function be an 
increasing function. 

Used in shape-constrained additive 
models (SCAMs).  When one 
knows more about the shape of the 
resulting function than that it is 
monotonic, these splines should 
be used. 

Pya and 
Wood 
(2015) 

Soap Film A basis designed for smoothing in 
an irregular, nonrectangular region, 
such as over a body of water. 

Used for irregular regions when 
one should also account for the 
region’s irregular shape, which is 
often a geographic area of mixed 
type (such as including land and 
large bodies of water). 

Wood 
(2008) 

Tensor 
Product 

This is a procedure for constructing 
a basis for a multivariate smooth 
from bases for univariate smooths.  
Notably, the covariates of the 
smooth do not need to have the 
same scale or units (unlike 
multivariate smoothing via Duchon 
or thin-plate splines). 

This should be the default 
approach for multivariate 
smoothing unless the covariates 
are in the same units (specifically, 
spatial coordinates). 

de Boor 
(1978) and 
Wood 
(2006) 

 
We prefer that 𝑘 be large, because a large 𝑘 improves the ability of the basis to 

approximate the function 𝑓.  However, a large 𝑘 raises the possibility of overfitting or 
unstable estimation.  We will require additional constraints to achieve the desired 
smoothing results. 

The idea of fitting the output is achieved by solving 

minఈ,௙ ෍(𝑦௜ − 𝛼 − 𝑓(𝑥௜))ଶ௡
௜ୀଵ . 

The equation above is the least squares minimization problem: a function best fits the 
output when the sum of the squared differences between the observed output value 𝑦௜ and 
the predicted value 𝛼 + 𝑓(𝑥௜) is made as small as possible.  Unfortunately, the space of 
possible 𝑓 permitted by the basis may be so large that this minimization is too easy to solve.  
The resulting fit may superfluously interpolate the output rather than extract a correct 
pattern.  This superfluous interpolation can be solved by modifying the problem by 
penalizing the 𝑓 we dislike. Abstractly, we do this by instead solving 
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minఈ,௙ ෍൫𝑦௜ − 𝛼 − 𝑓(𝑥௜)൯ଶ௡
௜ୀଵ + Cost(𝑓). 

In addition to requiring that the function fit the data, we also ask that it not pick a 
costly 𝑓 that may be overfitting the data.  In function smoothing, we equate cost with 
wiggliness.  One way to define a wiggly function is to say that the area under the second 
derivative of 𝑓 is big.  This suggests that we solve 

minఈ,௙ ෍(𝑦௜ − 𝛼 − 𝑓(𝑥௜))ଶ௡
௜ୀଵ + 𝜆න (𝑓ᇳ(𝑥))ଶ௕

௔ d𝑥. 
Keeping the variation of the second derivative of 𝑓 small over the domain of 𝑥 (while also 
requiring that the second derivative be continuous) encourages differentiable functions that 
do not wiggle too much; the ideal function by this metric is a straight line, a function with 
zero wiggle.  We can now use a basis with lots of functions and not be too concerned about 
overfitting. 

The parameter 𝜆 controls how costly a wiggly fit is.  Figure 5-2 illustrates this tradeoff 
when attempting to smooth fictitious data.  Having a large 𝜆 may result in underfitting the 
data and having fewer local phenomena, such as local extrema; the resulting fit looks like 
a flat trend line (panel for 𝜆 = 100).  A small 𝜆 makes having a large second derivative 
cheap, thus allowing the function to wiggle more (panel for λ = 1e−04).  But the danger 
of a small 𝜆 is overfitting. 

 
Figure 5-2.  How different choices of smoothing parameter affect fitted function.   
The smooth in the leftmost panel is too wiggly and likely would not predict new 

observations well because it is too influenced by the data it saw and fails to generalize.   
The smooth in the rightmost panel makes biased predictions through  

most of the space because it is too smooth. 

In principle, a good 𝜆 is one where the resulting fit predicts data well and does not 
depend too much on any individual data point; if a data point were not used for smoothing, 
the smooth function estimated with this omission would predict the missing data point well.  
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This idea motivates use of the generalized cross-validation (GCV) score, which estimates 
the error of the smoothed function for each data point if that data point were not used for 
smoothing.  Picking a 𝜆 that minimizes the GCV results in a smooth that should neither 
underfit nor overfit the data. 

In summary, smoothing involves three choices: 

1. The set of basis functions, 

2. The number of basis functions to include, and 

3. The roughness penalty parameter 𝜆. 

We recommend picking a basis by its capabilities and ease of computation rather than 
fit quality.  If one has no such concerns, software defaults likely are fine for many data 
problems. 

The number of basis functions, 𝑘, to include is a secondary concern.  The usual 
warning about including too many parameters in a fit does not apply here since overfitting 
is controlled by the cost function and 𝜆.  Hence, picking a large number of basis functions 
is reasonable if the fits are computationally tractable. 

Assuming the operational space is well-specified, the roughness penalty parameter, 𝜆, controls fit quality.  The GCV score serves as a good method to pick 𝜆, but there are 
other options, like the restricted maximum likelihood (REML) criterion.  The value of 𝜆 
can indicate model improvements.  For example, if 𝜆 is very large and the resulting fitted 
function looks nearly linear, the model might be improved by replacing the general smooth 
function with a linear term.  Table 5-2 summarizes methods for picking a smoothing 
parameter. 

Table 5-2.  Methods for selecting a smoothing parameter; see Wood (2017). 

Method Description Recommendation Additional 
References 

REML 

Restricted maximum likelihood; maximizes 
the likelihood of the data, modeled as the 
likelihood of the data given the parameters 
multiplied by the prior likelihood of the 
parameters, then integrates out the 
parameters, leaving the likelihood of the 
data given the smoothing parameter. 

Preferred method, but not 
at all simple (if done from 
scratch) and can be 
numerically difficult. 

Anderssen and 
Bloomfield 
(1974) and 
Wahba (1985) 

𝐶௣ 

Attempts to minimize squared error; 
requires a known scale parameter. 

If one knows the scale 
parameter, this method 
works well, but that is 
rarely the case.  The R 
package mgcv default is 
to use 𝐶௣ if possible, but 
usually it uses GCV. 

Mallows (1973) 
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Method Description Recommendation Additional 
References 

GCV 

Leave-one-out cross-validation (n-CV) 
estimates the error made by a model 
predicting an outcome using all outputs 
except those associated with the selected 
observations.  Generalized CV (GCV) has a 
similar interpretation but makes estimated 
error rotation-invariant.  n-CV can also be 
generalized to leave-several-out CV, which 
reduces the variance associated with GCV 
estimates of accuracy at the expense of 
increasing bias, as described in Hastie, 
Tibshirani, and Friedman (2009).  GCV 
seems more intuitive than REML.  While 
REML asymptotically undersmooths relative 
to GCV (Wahba 1985), GCV is more likely 
to have multiple minima and undersmooth 
relative to REML (Reiss and Ogden 2009). 

GCV is a good choice if 
the sample size is large, 
overfitting is worse than 
underfitting, or REML is 
infeasible. 

Craven and 
Wahba (1979) 

OSER 

After obtaining a distribution describing the 
value of the smoothing parameter, select 
the smoothing parameter one standard 
error above the mean, thus erring on the 
side of oversmoothing (this is called the 
one-standard-error rule, or OSER).  
Requires using a procedure such as REML 
first to obtain such a distribution. 

If other procedures seem 
to be producing models 
that are not smooth 
enough, try OSER. 

Hastie, 
Tibshirani, and 
Friedman (2009) 

2. Generalized Additive Models: Extending the Additive Model Framework to 
Arbitrary Response Types 
GAMs combine the ideas of additive models described above (stating that the 

relationship between a response variable and some factors depends on smooth functions 
we need to estimate) with generalized linear models, a class of statistical models including 
least squares linear regression as well as logistic regression, survival analysis statistical 
models, and others.  The theory allows fitting metamodels relating the response variables 
to the factors even when that response is binary (hit/miss), a discrete count (number of 
targets found), or non-negative (time to failure). 

A GAM will fit a metamodel that says the mean of the response variable depends on 
the sum of smooth functions of the factors, with each such function needing to be estimated.  
A link function, determined by the type of response variable being handled (binary, count, 
survival time, etc.), connects this mean to the additive model.  Hence the model estimates 
average values for the response variables given the input factors, and it does so while saying 
relatively little about what the relationship between the response and a specific factor is. 
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An example of such a model is 𝜂(𝜇௜) = 𝛼 + 𝑓ଵ(𝑥ଵ௜) + 𝑓ଶ(𝑥ଶ௜), 
where 𝜇௜ is the mean of 𝑦௜ given the value of the predicting factors 𝑥ଵ௜ and 𝑥ଶ௜ and 𝜂 is a link 
function that depends on the statistical nature of the response variable.  For example, if the 
response variable is binary, 𝜂 is usually (but not required to be) the canonical link function12 
of the binomial distribution, which is the logit function, or 𝜂(𝑝) = log ቀ ௣ଵି௣ቁ.  Table 5-3 lists 

common probability distributions, use cases for those distributions, and common link functions 
used for those distributions.  After we estimate 𝑓ଵ and 𝑓ଶ using smoothing techniques, we can 
estimate the conditional mean of the response variable given the factors via 𝜇̂௜ = 𝜂ିଵ൫𝛼ො + 𝑓መଵ(𝑥ଵ௜) + 𝑓መଶ(𝑥ଶ௜)൯, 
with 𝜇̂௜, 𝛼ො, 𝑓መଵ, 𝑓መଶ all signifying estimates. 

Table 5-3.  Common response distributions for Generalized Linear Models and GAMs, 
when to use them, and their properties.  There is a star by the canonical link. 

Distribution Range Common 
Use Case 

Example 
Response Link Functions 

Normal Unbounded Measurement Signeda miss 
distance 

Identity* 

Bernoulli 0,1 Success or 
failure 

Hit or miss Logit,* probit (normal inverse 
cumulative distribution 
function (CDF)), 
complementary log-log (CLL), 
identity, angular 

Poisson 0,1,2, … Count Number of 
failures in test 

Log* 

Negative 
Binomial 

0,1,2, … Count Number of 
warnings until 
failure 

log ቀ ఓ(ఓା௞)ቁ,* identity, square 
root 

Gamma Positive Time to event Time until 
failure; radial 
miss distance 

Inverse,* log 

Inverse 
Gaussian 

Positive Time to event Time until 
failure 

Square inverse* 

a A signed value in this context can either be positive or negative.  An example of a signed miss distance is 
recording that a shell that landed to the left of the target had a negative miss distance, while if it landed to 
the right it had a positive miss distance.  Realistically, we would record another signed missed distance for 
misses above and below the target. 

 

                                                 
12 The canonical link function is a special link function specific to the distribution being modeled; it has 

slight numerical advantages in estimation.  For more details, see McCullagh and Nelder (1989). 
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Hence, there are a number of moving parts when building GAMs: 

• Selecting the distribution of the response. 

• Selecting the link function, 𝜂. 

• Selecting the factors. 

• Selecting the linear terms, smooth terms, and interactions. 

• Selecting the basis and number of basis functions for smooth terms. 

• Fitting the model, with all the above components. 

Some of these tasks are addressed well by software defaults, but the user needs to be 
aware of the issues at hand to use the software well. 

Here we offer tips on making these decisions and fitting GAMs. 
a. Response Distribution 
The distribution of the response is best selected based on subject matter expertise.  

Below are some examples of data encountered and what distribution could be used for 
modeling: 

• Success/fail data imply a Bernoulli response distribution. 

• Count data imply a Poisson or negative binomial response distribution. 

• Time-to-failure data imply a gamma response distribution. 

• The normal distribution is a good, general choice for continuous data, though 
one can explore alternatives (gamma, inverse gamma, etc.) to see if a better fit is 
possible. 

• The log normal distribution may be tried for skewed data as a first approach 
prior to trying another skewed distribution (such as gamma). 

These are just a handful of starting points, and software packages have several more 
options. 

b. Model Selection 
Similarly, identifying which factors matter and how they should influence the 

response variable’s mean should be driven by a combination of subject matter expertise 
and statistical expertise.  The best-fitting model may not be interpretable.  If 
understandability is desired, a highly predictive model may be unsatisfactory even when 
its predictive ability is good.  One approach to promoting interpretability is to estimate a 
more easily interpreted but mis-specified model.  Mis-specification comes with 
consequences; White (1982) discusses them in more depth, but a mis-specified model 
should be interpreted as the best approximation of the correct model, and it can come with 
less precise estimates of the model coefficients.  Another approach is to liberally add terms 
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and complexity to a model but decompose those effects into interpretable and opaque 
components; for example, decompose the effect of a variable on a response output into the 
sum of a linear and nonlinear effect.  If the less interpretable parts of the model are either 
statistically insignificant or make a small contribution to overall changes in performance, 
the noninterpretable parts can be viewed as being essentially nuisance parameters and 
largely ignored in analysis and discussion, perhaps not even reported (or relegated to an 
appendix). 

Information criteria (such as the Akaike information criterion or the Bayesian 
information criterion), 𝑝-values, and other metrics can assist with model selection, 
but metrics always provide only a single-number summary of model goodness, and other 
considerations can justify choosing one model over another regardless of what the 
metrics say. 

c. Basis Selection 
For general metamodeling with GAMs, we recommend a thin-plate spline basis for 

single-factor smooths, coupled with tensor product bases for interaction smooths.  Other 
bases will be useful depending on the type of data being modeled.  For example, if a factor 
has a cyclic effect, then use a cyclic cubic spline to account for the periodicity. 

When one is estimating the smooth functions that form the basis of the resulting 
model, software will do a lot of the work.  Choose a reasonable basis for the functions and 
a reasonable size for the basis, erring on the side of having many basis functions.  Going 
with 10𝑛ଶ/ଽ basis functions is a reasonable default (see Kim and Gu 2004).  In practice, 
modify the number of basis functions only if the software default is problematic. 

d. Computational Issues with Metamodels 
The fitting procedures for GAMs and GP interpolators are computationally complex, 

and they can take noticeable time to complete.  Some properties that influence fitting time 
include: 

• Large data sets, 

• Large number of factors, and 

• Large number of interactions. 

Working with subsets of the data or with simpler metamodels at the beginning of an 
analysis can be useful to quickly experiment with important metamodel decisions before 
devoting more computer time to estimation. 

3. Statistical Inference for Generalized Additive Models 
Once a GAM is fitted, we can perform statistical inference.  See Wood (2017) for 

details.  Our recommended software package, the R package mgcv, handles these details.  
Here is a selection of inferences the analyst can make: 
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• Interval estimates around estimated conditional means and model parameters 

• Pointwise interval bands around the smooth functions produced by the fit 

• Testing the statistical significance of a function 

• Analysis of variance (ANOVA)-type tests that check whether a collection of 
functions affect the conditional mean response 

In Section 6, we discuss techniques one can use to judge the quality of a fitted GAM. 

4. Extensions of the Generalized Additive Model Framework 
The additive model framework used in GAMs can be extended for other purposes 

and to impose different constraints.  Here are the most relevant extensions for 
metamodeling M&S system output: 

• Shape-constrained additive models (SCAMs) incorporate smoothing functions 
that cannot take an arbitrary shape and need to satisfy some condition, such as 
being an increasing function (Pya and Wood 2015). 

• Additive quantile models estimate conditional percentiles of the response 
variable (Koenker 2011). 

• Functional additive models (FAMs) allow the factors or even the M&S outputs 
to be a function rather than a single number or label.  For example, such a 
model could use as a predictor not only whether a missile hit or missed, or its 
miss distance, but also the missile’s entire flight path, or it even could predict 
what the typical flight path will look like based on input factors (Müller and 
Yao 2008). 

• Vector GAMs can model both location and dispersion, rather than location only.  
These models allow output variation to depend on the factors rather than be 
constant over the operational space.  They also allow multiple response variables 
to be modeled simultaneously (Yee 2015). 

• Multiclass additive models determine the probability that an outcome is one of a 
number of potential outcome classes (Zhang et al. 2019). 

B. Linear Models as Metamodels 
Linear models (or generalized linear models) can be used as metamodels of stochastic 

simulations.  We recommend additive models since they have much less stringent 
requirements about the relationship between the operational space and operational metrics.  
Additive models include linear models as a subclass; thus, by recommending the use of 
additive models, we can say we still recommend the use of linear models but in an extended 
framework allowing the possibility and discovery of nonlinear relationships in addition to 
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linear ones.  One may discover that additive models’ flexibility contributes little to overall 
fit and thus one may revert to linear effects only, but one should not do so without 
mitigating circumstances (usually difficulties in performing experiments, which is why 
linear models should still predominate in live testing). 

It may not be possible to estimate an additive model.  In these situations, the classic 
linear model may be a good fallback, especially in low SNR situations.  Usually the reason 
additive models cannot be estimated is limitations in the observations due to both small 
sample size and insufficient variation of factors in the sample.  D-optimal experimental 
designs for relatively simple linear models likely would preclude fitting additive models, 
while SFDs should vary points enough.  We discuss data collection briefly in Section 7; 
Wojton et al. (2021) devote themselves to the topic. 

C. Gaussian Process Models Can Be Used in the Additive Model 
Framework 
We noted in Section 4 that adding a nugget effect leads to a GP that no longer 

interpolates the data but instead passes near it.  The GP can then be seen as predicting the 
mean of the data at a given point, with some extra randomness still being possible.  
Otherwise, the GP discussion here is the same as in Section 4, including all discussions 
about picking a covariance kernel. 

When one allows for a nugget effect, the GP can be interpreted as a smoother.  In 
fact, GPs fit into the additive model theory, and software such as the R package mgcv can 
fit additive models with the additive functions being GPs. 
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6. Evaluating the Fit of a Metamodel 

In this section, we discuss strategies for evaluating metamodel quality.  Sections 4 
and 5 present many options for fitting a metamodel to M&S outputs.  Analysts need M&S 
outputs to help them choose which of those options to use when estimating a metamodel.  
Broadly speaking, a metamodel needs to describe M&S outputs well, and metamodeling 
choices need to facilitate a good description of the M&S environment.  This section 
describes how to judge metamodel performance and improve it. 

A well-calibrated metamodel makes predictions that generally match M&S 
environment outputs.  We observe some M&S outputs and use those outputs for estimating 
a metamodel.  Closely matching outputs already observed—known as in-sample outputs—
is not good enough; the metamodel needs to describe hypothetical unobserved outputs—
known as out-of-sample outputs—well too.  Techniques such as cross-validation (CV) and 
splitting the outputs into training, screening, and evaluation output sets help quantify 
metamodel performance in contexts not used for fitting.  One should plan the use of such 
techniques before generating M&S outputs, and DOE should accommodate these 
techniques.  We more precisely define model quality using metrics such as Brier scores, 
mean-squared error (MSE), the Bayesian information criterion, and others; all of these 
metrics either describe how much metamodel predictions deviate from observed outcomes 
or state how likely the outputs would be given the metamodel we fitted.  Visualizations 
such as calibration plots reveal the relationship between predictions and observed outputs. 

If our metamodel assessment metrics remain consistent between training, screening, 
and evaluation sets, we can rely on the metamodel’s predictions; otherwise, the metamodel 
may be overfitting M&S environment outputs, meaning that it mostly repeats outputs 
observed in the training set without learning the larger patterns of the M&S environment it 
needs to emulate.  The metamodel may also simply fail to make precise predictions—a 
phenomenon known as underfitting—though we do the best we can in fitting a metamodel 
to make precise predictions without overfitting to the training set.  If we are satisfied with 
the precision of metamodel predictions and we observe no evidence of overfitting as we 
evaluate its performance on observations not used directly for fitting, we may declare the 
metamodel a sufficient representation of the M&S environment and use it. 

This section describes the components of this process in more detail.  We start by 
discussing output splitting, then present metrics that help define model quality and fit.  
Finally, we discuss visualization techniques. 
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A. Sample Division for Evaluation 
Our ultimate goal is for the statistical model to make good predictions about 

unobserved M&S environment output.  Outputs used to fit a metamodel are called in-
sample outputs, while outputs not used for fitting are called out-of-sample outputs.  We 
want the model to predict both in-sample and out-of-sample outputs well.  A model can 
predict in-sample outputs very well, perhaps perfectly, yet poorly predict out-of-sample 
outputs; a look-up table or nearest neighbor interpolator may have this property.  For 
stochastic simulations, this phenomenon is called overfitting.  (There is no such thing as 
overfitting for deterministic simulations.)  Strategies to address overfitting attempt to 
emulate the in-sample/out-of-sample division and observe the metamodel’s ability to 
predict emulated out-of-sample data. 

Out-of-sample observations effectively become in-sample outputs when analysts use 
them frequently to measure overfitting.  One should think of outputs used at any point in 
the fitting process as being “contaminated” and thus less able to reveal overfitting.  The 
more the so-called out-of-sample outputs are referenced, the more contaminated they 
become.  For this reason, we recommend that analysts keep some outputs separated from 
the metamodel fitting process until a final candidate metamodel has been determined, at 
which point the held-out sample can give a final assessment of the metamodel’s 
performance. 

1. Train-Screen-Evaluate Split for Metamodel Evaluation 
When one can do so, assessing metamodel fit using out-of-sample outputs is better 

than using in-sample outputs.  Out-of-sample outputs might be hard to come by, but one 
option is to create out-of-sample outputs by separating them out at the beginning of the 
metamodeling process.  This held-out output is called the evaluation output set, while the 
M&S output still used for model fitting is called the training output set.  This strategy of 
splitting the M&S outputs is known as the train-evaluate split. 

Ideally, the evaluation set is used only for a final characterization of metamodel 
performance and is never used for metamodel selection.  This is because model selection 
implicitly suggests refitting models until one with good out-of-sample performance is 
found.  If an evaluation set is repeatedly queried, it ceases to be an out-of-sample output 
since one is effectively optimizing metrics computed on it with different statistical fits, 
even if the process is ad hoc.  Hence, the test set is often viewed as being off limits until 
one has decided what metamodel to use and how it should be fitted, and then has estimated 
it.  The evaluation set is only ever referenced to obtain final estimates of prediction error. 

If the evaluation set is off limits until the very end of metamodel fitting, how can one 
get a momentary sense of out-of-sample performance for a candidate metamodel?  Some 
propose splitting the training outputs yet again so there is a training output set and a 
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screening output set.  The screening output set emulates the evaluation set as it is not used 
in model fits directly but is used for intermediate metamodel evaluations.  The difference 
between the screening set and the evaluation set is that analysts can repeatedly query the 
screening set to estimate out-of-sample performance.  We call splitting the available M&S 
outputs this way the train-screen-evaluate split.13 

The more the screening set is used, the more it behaves like the training output and 
effectively becomes a part of the fit, degrading its ability to emulate the evaluation set and 
out-of-sample outputs.  Hence, while the screening set can be repeatedly queried, some 
restraint is wise.  We recommend querying the screening set when one has obtained a 
metamodel that could be the final candidate metamodel but one has not committed to it, 
or when one has a small list of candidate metamodels and needs to downselect to a 
single metamodel. 

There need to be enough M&S outputs to obtain a good fit and enough data to 
meaningfully assess the model’s performance.  Hastie, Tibshirani, and Friedman (2009) 
suggest that 50 percent of all outputs used be training outputs, 25 percent be screening 
outputs, and 25 percent be evaluation outputs.  However, their rule of thumb likely emerged 
in a context where data are more numerous and less expensive than in the Department of 
Defense test and evaluation M&S context.  Study planners can justify smaller sample sizes 
for the screening and evaluation sets via statistical sample sizing methods, such as choosing 
the sample size for the screening and evaluation sets such that the standard errors of the 
preferred evaluation metrics (MSE, accuracy, etc.) are acceptably small in both sets.  In 
any case, we recommend that the screening and evaluation sets have the same sample sizes, 
since the screening set operates like the evaluation set but can be referenced multiple times. 

We recommend making decisions regarding metamodel evaluation strategies prior to 
collecting data, so the data may be generated in a manner that supports the strategy.  The 
sample size and experimental design for the training, screening, and evaluation sets should 
be generated and executed separately.  By accounting for output splitting in study planning, 
we ensure that the output sets are well-balanced and representative of the factor space in 
which predictions will be made and statistical inference is needed.  We also ensure that we 
retain the design properties we desire, such as the spread of the points throughout the factor 
space and the equal representation of each region of the factor space.  Separating the 
designs helps ensure that the training, screening, and evaluation sets remain separated and 
thus serve as good representations of unseen data.  Failing to do so, perhaps by generating 
one DOE that an analyst then splits randomly after collecting M&S observations, may 
                                                 
13 To our knowledge, ours is the first use of this terminology.  In statistics and machine learning literature, 

the screening set is called the validation data set, and the evaluation set is called the test data set; Hastie 
et al. (2009) use this terminology.  We introduced different terminology here to avoid confusion with 
existing terminology in the Department of Defense test and evaluation community, but we note the 
difference when interfacing with other communities. 
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result in imbalance in these sets of observations and also result in the training set not having 
good spread throughout the factor space. 

We realize our recommendation adds yet another consideration to the process of 
forming a good DOE for a study.  Test and evaluation practitioners may not like having 
yet another concern.  Our recommendation springs from our desire to ensure that the 
resulting statistical analysis be both simple and high quality.  While the train-screen-
evaluate split process is data-hungry, it is the simplest way to achieve an unbiased estimate 
of out-of-sample metamodel performance. 

2. Cross-Validation for Metamodel Evaluation 
Another technique used for assessing out-of-sample metamodel performance is 𝐾-fold cross-validation (K-CV).  The strategy involves splitting the training M&S outputs 

into 𝐾 subsets, known as folds.  Then one fits 𝐾 models, each model leaving out one of the 𝐾 folds of data in the fitting process, and assesses the model’s performance on its respective 
left-out data.  This process yields 𝐾 estimates of out-of-sample performance, which the 
analyst can analyze and aggregate as desired. 

CV thus resembles the use of a screening set but not an evaluation set.  It is a popular 
technique for choosing tuning parameters, such as the smoothing parameter for GAMs or 
some of the parameters in the covariance kernels of GPs.  When one has chosen a metric 
by which to evaluate model performance, such as MSE, one can then select the value of a 
tuning parameter such that the CV performance is optimized, such as choosing a smoothing 
parameter that minimizes the cross-validated MSE.  This does not guarantee that no 
overfitting has taken place, though.  It may sound difficult to refit a model 𝐾 times, but if 
the model and error metric are appropriately chosen, in some cases estimates of error can 
be computed with minimal effort (as is the case with GAMs and the MSE). 

Common choices of 𝐾 are 5, 10, or 𝑛.  The case 𝐾 = 𝑛 is known as leave-one-out 
CV, here called n-CV, as each observation is left out once as its own test set and all other 
data are used for estimation.  n-CV produces an approximately unbiased estimate of the 
out-of-sample error, but it varies greatly because of individual variation in each of the 
observations (Hastie et al. 2009).  Choosing fewer folds yields an estimate that may be 
biased, but the variance is smaller. 

CV is often used in conjunction with the train-screen-evaluate split (in the training 
set only).  CV is used freely to get a sense of a fitting procedure’s out-of-sample 
performance as one makes fitting decisions.  Often, CV is done repeatedly, and in cases 
such as K-CV, subsets for the folds are chosen randomly anew each time K-CV is 
performed.  The screening set is referenced occasionally when one thinks they may have a 
small list of candidate metamodels for the “final” metamodel.  The evaluation set is 
referenced most stringently, ideally only once at the end of the metamodel fitting process 
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as a final descriptor of its predictive performance.  Altogether, the data-splitting approach 
forms a robust framework for finding a model with the best predictive performance while 
resisting overfitting. 

B. Prediction Metrics for Metamodels 
Splitting outputs into subsamples only works if a metric exists that can describe how 

well a metamodel’s predictions describe observations.  We should define what good 
performance looks like.  Many metrics facilitating such a definition exist, each with an 
intended use and distinct advantages and disadvantages.  Hence we split our discussion 
based on the response variable under study.  We start by considering metrics for binary 
response variables,14 then consider metrics for continuous response variables.  The metrics 
describe performance well but have disadvantages for metamodel selection.  Information 
criteria handle metamodel selection better but are less intuitive and do not as directly 
describe the accuracy of metamodel predictions.  We discuss them at the end of this section, 
along with best practices for using them well. 

1. Preliminary Summary Statistics 
Good practice before estimating complex statistical metamodels is to compute some 

basic summary statistics, such as sample proportions for categorical responses or means 
and standard deviations for quantitative responses.  This should be done in the entire output 
set and then, after splitting the outputs into interesting subsets, based on some categorical 
factor believed to be important or splitting some important continuous variables into high 
and low values.  A few splits are all that’s needed, and one need not do too much splitting 
lest one find themselves accidentally fitting a decision tree to their outputs (contingency 
tables are a form of decision tree).  The purpose of such summary statistics is to understand 
how much variation there is in the outputs and thus establish a baseline of what 
performance of a more complex metamodel should be.  If a metamodel has no predictive 
capability over simply predicting the most common outcome observed in the outputs, it is 
a bad metamodel.  Similarly, if the metamodel’s root mean-squared error (RMSE, the 
square root of the mean-squared error) is higher than the standard deviation of quantitative 
outputs, the model has more error than a simple model that predicts the average outcome.  
An outcome so extreme seems unlikely, but hopefully the metamodel’s RMSE is 
substantially lower than the outputs’ standard deviation. 

                                                 
14 Haman et al. (2022) is devoted to assessing model quality at predicting binary outcomes; we cite this 

publication as a reference for those wanting a longer discussion. 
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2. Metrics for Binary Data Metamodels 
Analysts use accuracy to measure the errors associated with a metamodel’s 

predictions.  Accuracy is intuitive—it is just the proportion of responses that are correctly 
classified—but inadequate.  Problems with accuracy include the following: 

• It is not easy to optimize a metamodel by maximizing accuracy. 

• Accuracy is a better measure for balanced observations, which are collections of 
observations where the proportion of possible outcomes (such as hit or miss) are 
roughly equal; if 90 percent of outcomes are hits and 10 percent are misses, the 
outcomes are imbalanced. 

• Accuracy gives no partial credit for nearly predicting correctly. 

Loss functions,15 such as the Brier score, are a good alternative to accuracy.  The Brier 
score in particular helps separate confident metamodels (with predictions commonly near 
1 or 0) from underconfident metamodels (with predictions commonly near 0.5).  If a 
success is called 1 and a failure called 0 in an output set with binary outcomes and for 
which predicted probabilities of success are computed, the Brier score is the average 
squared difference between the outcome (either 1 or 0) and the predicted probability of 
observing a success.16  The lower the Brier score, the better the predictions generated.  Brier 
scores are small when both predictions are correct and when the probability of that outcome 
is high.  Brier scores for binary outcomes are high when the predicted probabilities of an 
outcome are near 50 percent or when confident-but-wrong predictions are frequent.  The 
score also better handles imbalanced outcomes. 

3. Metrics for Continuous Data Metamodels 
In the case of continuous responses, we measure whether the metamodel predictions 

are close to the outcomes.  Three common metrics are used for continuous response 
metamodel evaluation: 

1. MSE, the average squared distance between prediction and outcome.  (The 
measurement units of the MSE are the squared units of the M&S outputs under 
study, making MSE interpretation difficult.) 

2. RMSE, the square root of the MSE, and thus in the same measurement units as 
the M&S outputs. 

                                                 
15 A loss function is a summary of the discrepancy between predictions and outcomes.  The function can 

be applied to in-sample data or out-of-sample data. 
16 For binary data, the Brier score and the MSE are identical. 
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3. Mean absolute error (MAE), the average distance between prediction and 
outcome. 

4. Maximum absolute error (MxE), the maximum distance between prediction and 
outcome. 

All of these metrics are effective summaries of the error distribution.  We present formulas 
for these metrics in Table 6-1.  Each formula offers a different perspective on error in the 
predictions; low MSE suggests the metamodel is good on average, low MAE suggests that 
model splits observed outputs well, and lower MxE suggests that worst-case prediction 
errors are well controlled.  These metrics most intuitively correspond to the notion of 
quantifying how much error a metamodel makes. 

None of these metrics, however, are fully suitable when trying to compare different 
competing metamodels using in-sample outputs.  Suppose we are trying to decide which 
factors to include in a metamodel or how to use those factors (including whether or not to 
include interaction terms).  MSE cannot increase when one includes an irrelevant factor, 
meaning it can only decrease and thus look artificially better with the inclusion of irrelevant 
information.  (MAE and MxE share this malignancy.)  Taken to an extreme, MSE 
encourages throwing in as many factors as possible, regardless of their relevance, to 
decrease the MSE.  Such a strategy is nonsense and a clear path to overfitting. 

Information criteria, such as the Akaike information criterion (AIC) or the Bayesian 
information criterion (BIC), seek to mitigate the problem of picking a metamodel with in-
sample outputs. 

4. Akaike Information Criterion 
a. Basic AIC 
AIC takes the simplest approach: add a term to the loss function to penalize complex 

metamodels.  For linear metamodels, the term penalizing complexity is 2𝑑, where 𝑑 is the 
number of parameters in the metamodel (including the intercept).  For metamodels such as 
GAMs, 𝑑 is replaced with a different measure of complexity, the effective degrees of 
freedom, which responds to the number of factors in the metamodel and the overfitting or 
underfitting from the smoothing parameter.  AIC is 

Loss + 2𝑑. 
Statistical theory implies that models should minimize the AIC. 

While AIC can use the MSE or MAE to describe loss, the preferred approach is to 
use the log-likelihood function.  This requires having a likelihood function describing the 
M&S output and the metamodel, which certainly is available for GAMs.  If 𝐿௡ is the 
likelihood function for the data for a generic set of parameters 𝜃, then AIC becomes 
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AIC = −2log(𝐿௡) + 2𝑑. 
AIC values can be compared under some conditions.  Two metamodels built on the same 
data have comparable AICs and can use their AIC values to suggest which is superior, with 
lower AIC values being better. 

b. Corrected AIC 
For most metamodels practitioners encounter, the AIC prefers metamodels with 

many parameters, particularly in small samples.  In response to this property, Hurvich and 
Tsai (1989) advocate using Sugiura’s corrected AIC (1978): 

AIC஼ = AIC + 2𝑑ଶ + 2𝑑𝑛 − 𝑑 − 1. 
Notice that as the sample size 𝑛 increases, the difference between AIC஼ and AIC becomes 
negligible, so the two measures are near equivalent for large sample sizes while AIC஼ better 
picks models for small sample sizes.  Hence, given the choice between the two, we 
recommend using AICେ in all cases (though as discussed below, we prefer the BIC over 
either variant of the AIC).  Given that these two statistics still behave similarly, we often 
refer to the AIC஼ as the AIC. 

5. Bayesian Information Criterion 
BIC is a close cousin to AIC, but it is motivated by Bayesian statistical reasoning.  In 

short, choosing the metamodel with the lowest BIC is equivalent to choosing the 
metamodel with the highest posterior probability of being the true metamodel among a set 
of candidate metamodels.  The formula for BIC is similar to the formula for AIC, 

BIC = −2log(𝐿௡) + 𝑑log(𝑛). 
AIC and BIC serve similar roles, so which to use?  AIC is more forgiving of complex 

metamodels and overfitting than BIC; this is undesirable.  That said, in smaller samples, 
BIC may overpenalize complex models.  But BIC’s easy interpretation in a Bayesian 
framework is appealing, as is having statistical theory suggesting that for large sample sizes 
it will select the correct model. 

After considering benefits and disadvantages of these information criteria, our 
recommendation among the criteria is the BIC.  However, we do not feel that either 
information criterion is a necessary reason to select a metamodel.  Subject matter expertise 
should be part of selecting a metamodel.  We see the information criteria as aids to the 
decision, not as having the goal to minimize themselves. 
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6. Warning Regarding Automated Model Selection Procedures 
If one has a set of metamodels that each seem plausible for the M&S environment 

outputs and one needs to decide which to use, AIC is a reasonable way to decide.  However, 
some software offers routines to automatically find the metamodel that minimizes AIC by 
adding or removing factors or changing functional forms, an approach sometimes called 
stepwise procedures.  We do not recommend these procedures.  Their search for a model 
will invalidate inference regarding the model’s abilities.  Statistical procedures usually do 
not account for such a selection process.  See Derksen and Keselman (1992), Hurvich and 
Tsai (1990), Mantel (1970), Roecker (1991), and Tibshirani (1996) for more information. 

Metamodel specification is an opportunity for analysts to describe the phenomenon 
in a way that reflects their subject matter expertise.  Stepwise routines are a way to 
outsource to an algorithm the hard part of building a metamodel—that is, building the 
metamodel based on knowledge of what is being modeled.  AIC is not a get-out-of-jail-
free card for escaping the challenge of metamodel selection. 

We recommend limiting use of the AIC to a handful of candidate metamodels with 
substantial differences between each other.  If one suspects that a factor, set of factors, or 
some function of factors (e.g., interactions, quadratic terms) may be relevant to the 
response variable, include those terms in a candidate metamodel.  Metamodels can include 
factors the analyst thinks are necessary to obtain a good statistical fit but are not interesting 
in their own right, sometimes called nuisance factors or nuisance parameters.  If statistical 
fitting of such liberal metamodels yields nuisance parameter estimates that are either not 
statistically significant or have a small effect on response variable predictions in the factor 
space, such estimates can be reported only in a statistical appendix and largely ignored in 
discussion and interpretation.  Using the AIC as a tiebreaker between metamodels in 
uninteresting edge cases may also be acceptable. 

7. Summary of Metrics 
Table 6-1 summarizes the metrics discussed up to this point, in addition to some 

metrics not discussed in depth. 
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Table 6-1.  Common metrics used in assessing prediction quality and error;  
see Hastie, Tibshirani, and Friedman (2009). 

Metric Response Formula Interpretation 

Accuracy Discrete Correct classification𝑛  
Number of correct predictions made by the 
metamodel, with larger being better 

Precision Discrete Correctly predicted 𝐶
# of cases of 𝐶  

How frequently a class was correctly 
called, with larger being better 

Recall Discrete 
Correctly predicted 𝐶
# of predictions of 𝐶  How frequently predictions were correct, or 

the true alarm rate, with larger being better 

Brier Score Binary 
1𝑛෍(௡
௜ୀଵ 𝑦௜ − 𝑝̂௜)ଶ 

MSE of predictions, with smaller being 
better 

MSE Continuous 
1𝑛෍(௡
௜ୀଵ 𝑦௜ − 𝑦ො௜)ଶ 

Squared distance between a prediction 
and the observed outcome, with smaller 
being better (allows for loss compensation) 

RMSE Continuous √𝑀𝑆𝐸 

Square root of MSE; this means the units 
of the metric match the units of the M&S 
outputs being analyzed, making 
interpretation easier 

MAE Continuous 
1𝑛෍|𝑦௜ − 𝑦ො௜|௡
௜ୀଵ  

Distance between a prediction and the 
observed outcome, with smaller being 
better (does not allow for loss 
compensation) 

MxE Continuous max௜|𝑦௜ − 𝑦ො௜| The maximum error made, with smaller 
being better (focuses entirely on worst-
case loss) 

AIC Any −2log(𝐿௡) + 2𝑑 

Part of a formula that describes how likely 
a model is to minimize information loss in 
predictions and thus describe the outputs 
well, with smaller being better; requires a 
likelihood 

Corrected 
AIC Any AIC + 2𝑑ଶ + 2𝑑𝑛 − 𝑑 − 1 

Like AIC, but corrected to better control 
overfitting; requires a likelihood 

BIC Any −2log(𝐿௡) + 𝑑log(𝑛) 

Part of a formula that describes the 
probability of a metamodel being the true 
metamodel among alternative 
metamodels, with smaller BIC being 
better; requires a likelihood 

Deviance-𝑅ଶ Any Explained deviance
Total deviance  

The percentage of variation in the sample 
that is described by the metamodel, with 
larger being better; requires a likelihood 

Adjusted 
Deviance-𝑅ଶ Any 1 − (1 − 𝑅ଶ) 𝑛 − 1𝑛 − 𝑑 

Like 𝑅ଶ but adjusted to punish metamodels 
with lots of parameters; requires a 
likelihood 
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C. Visualizations for Assessing Metamodel Calibration 
All the above metrics roll up prediction errors into a single metric.  While this gives 

a single number to focus on, aggregation removes nuance.  Visualization methods provide 
a means to unwrap the predictions and further explore their relationship with observed 
outcomes.  We can see for what predicted values the metamodel’s predictions may 
be biased. 

We focus on two plots for the continuous and binary case that compare metamodel 
predictions to observed output.  Both of these visualization methods are types of 
calibration plots.  A well-calibrated metamodel makes predictions that roughly correspond 
to observed outcomes.  If a metamodel makes predictions inconsistent with observed 
outcomes, the metamodel may need revisiting, and different fitting decisions (like those 
discussed in Sections 3 and 4) may need to be applied. 

1. Visualization for Checking Continuous Data Metamodels 
We recommend plotting the predicted outcomes against the observed outcomes.  

Figure 6-1 presents an example of such a plot.  If metamodel predictions are unbiased, the 
predictions and outcomes should center around an Observed = Predicted relationship 
line.  If the model predictions have low variance, the predictions hug the line closely.  
Figure 6-1 shows a (hypothetical) model with consistent in-sample and out-of-sample 
performance and thus no evidence of overfitting.  Since observed and predicted outcomes 
seem to have a one-to-one relationship for all predicted values, the metamodel appears to 
be well-calibrated.  Whether the deviation of observed outcomes from their predictions (the 
spread around the line) is acceptable depends on the context, but in this case we can see 
that the metamodel does have predictive capability and some may consider the observed 
deviation around the identity line reasonable. 

 
Figure 6-1.  Observed versus Predicted Plot 
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2. Calibration Curve Visualization for Checking General Response Metamodels 
For the binary case, the metamodel makes probabilistic predictions.  Plotting outcome 

directly against probability would not yield the best plot due to outcomes being either 0 or 
1.  But if we fit another smoother to the observed outputs depending on the predictions, we 
can more easily see the relationship between predictions and outputs.  Doing this is known 
as fitting a calibration curve, with the ideal curve closely matching the identity line (the 
line representing Observed = Predicted).  All of the discussion in Section 5 about smooth 
fitting can be applied to effectively bin the outputs and handle nonconstant variance in 
predicted values.  We can then examine the confidence intervals surrounding the curve. 

Confidence intervals can suggest whether the metamodel overpredicts or underpredicts 
M&S outputs in some conditions, but they cannot say whether a calibration curve overall is 
statistically different from the identity line.  Answering that question requires that we 
perform a statistical test asking whether the curve is identical to the Observed = Predicted 
line.  When fitting a calibration curve via a GAM, we automatically get statistical procedures 
to decide whether the model is appropriately calibrated.  We can use the ANOVA test 
provided by mgcv (Wood 2017) to perform a statistical test deciding whether the fit is the 
identity line—the null hypothesis—or whether the fit is a general, smooth relationship that 
is not the identity line—the alternative hypothesis.  If the corresponding p-value of the 
ANOVA test is small, we should reject the null hypothesis of perfect calibration, but this 
does not necessarily mean that the model should not be used.  The confidence intervals of 
the calibration curve indicate where and how badly the model may be miscalibrated, thus 
allowing a nuanced decision on the model’s usefulness. 

These techniques are demonstrated in Figure 6-2.  The top and bottom rows contain 
calibration plots for two different data sets; the top row’s response variable is continuous, 
while the bottom row’s response variable is discrete.  These two rows are not directly 
connected and they are displayed in the same figure only for convenience.  The left column 
shows a hypothetical model’s fit with the observations used for fitting the metamodel, 
called in-sample observations; the right column shows the metamodel’s predictive ability 
for observations not used in fitting, known as out-of-sample observations.  The blue lines 
represent an ideal relationship between predictions and typical outcomes where predictions 
are equal to observations at least on average.  The red lines are a smoother’s estimate of 
the actual average value of an outcome as a function of the predicted value, surrounded by 
pink 95 percent pointwise confidence bands; if the blue line falls within the confidence 
region at a particular predicted value, there is insufficient statistical evidence to believe 
that the observed outputs differ on average from their predicted values.  However, if the 
confidence band always contains the identity line, that does not imply necessarily that the 
metamodel’s predictions correspond to observed outcomes on average everywhere.  The 
number displayed in the pink box in the upper-left corner of each plot is the 𝑝-value of a 
statistical test checking whether the identity line and the smooth line are statistically 
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distinguishable, with small 𝑝-values providing evidence the lines are not the same and thus 
the metamodel’s predictions are miscalibrated.  The metamodel in the top row of plots is 
well-calibrated in the sense that there is no evidence that its predictions differ from the 
ideal identity relationship, while the metamodel in the bottom row appears to be 
miscalibrated in both in-sample and out-of-sample outputs.  The poor out-of-sample 
performance likely follows from the metamodel’s inability to even predict outputs it saw 
and used for fitting, and the analyst should investigate why poor fitting is occurring and 
seek other modeling approaches that could improve the in-sample performance. 

 
Figure 6-2.  Calibration plots for in-sample and out-of-sample data, with the top panels for 

a continuous response and the bottom panels for a binary response.  Such calibration 
plots provide interesting and potentially powerful plots and statistical procedures for 

checking whether predictions and outcomes match.  Since these plots rely on smoothing 
though, they suffer all the complications of smooth fitting discussed in Section 4, 

inserting yet another layer of complexity into the analysis.  If this additional complexity  
is unappealing, see Haman et al. (2022) for additional methods to validate models  

that produce probability predictions. 
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D. Fitting Screening and Evaluation Outputs After Metamodel 
Selection 
The discussions above concerned selecting a good model.  The screening set and 

evaluation set at first glance look like they were not used for model fitting, but that would 
be an unfair depiction of their role, as they provided information useful for selecting a 
model and understanding its capabilities.  That said, one may wonder if, after we have 
selected a model, checked for pathologies such as overfitting, and quantified its predictive 
performance, the screening M&S outputs and the evaluation outputs could be used with 
the training outputs to fit a new model. 

Asymptotic theory calls for using as much data as possible for model fitting.  
Statistical error in our estimates decreases with larger samples.  If we have made all the 
decisions needed for fitting a metamodel and demonstrated those decisions yield 
metamodels that generalize beyond the sample used for fitting, getting even more precise 
estimates seems useful. 

On the other hand, when we evaluated the final metamodel with the evaluation set, 
we could then refer to those estimates as good estimates of that metamodel’s out-of-sample 
performance.  If we then estimate a different metamodel using all data, including screening 
and evaluation sets, we no longer are using the metamodel that generated the metrics 
observed in the evaluation set.  We no longer have either a screening or evaluation set, as 
all outputs are used for estimation.  Hence, the metrics we obtained from the screening set 
are no longer valid for the metamodel we use. 

These are the tradeoffs for refitting a model with all outputs observed.  While others 
can disagree, we believe that refitting the metamodel with all observations after model 
selection, while technically invalidating the metrics obtained from the evaluation set, 
should not result in a grave error.  We would be surprised if a set of fitting decisions 
yielding metamodels that consistently generalize in CV, screening, and evaluation outputs 
suddenly collapses when all outputs ever seen are used for fitting.  A more likely culprit 
would be a more fundamental problem, such as changes to the M&S environment or the 
weapon system’s software that cause different behavior never seen in the original outputs 
used for fitting the metamodel.
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7. Recommended Experimental Designs  
for M&S Verification and Validation 

We divide DOE into two classes: parametric DOE and SFDs.  Parametric DOE 
consists of DOE methodology designed for parametric regression metamodeling, including 
linear statistical models.  SFDs place design points in such a way that the factor space is 
filled with design points and the designs are model independent. 

Many designs for parametric statistical metamodels use design points selected to 
produce good statistical properties in the fitted metamodels.  Simple linear models prefer 
points near the edges of the factor space since the edges often are the best locations for 
placing points; such points minimize the standard errors of the metamodel coefficients. 

SFDs do not attempt to be good for a specified model and instead try to explore the 
whole factor space.  Both approaches have advantages and disadvantages, and the type of 
study dictates which approach is more appropriate.  In low SNR situations, statistical error 
is the biggest concern; parametric DOE should be used.  In high SNR situations, we can 
tackle model uncertainty using SFDs.  We discuss both DOE approaches briefly. 

More extensive recommendations are available in Wojton et al. (2019) and Wojton 
et al. (2021). 

A. Space-Filling Designs: Designs for Low-Noise Metamodels 
M&S environments may have little or no noise in their response variable.  Classes of 

models for which this would be the case include DSIM, HITL, and SITL models, or 
federations involving these types of simulations.  DSIM models in particular may have no 
noise at all.  HITL models often execute in real time and involve communication between 
different computer systems.  This can produce some natural variation in output. 

SFDs are well-suited to collecting data for metamodels and are recommended over 
parametric DOE.  These designs care mostly about distributing points throughout the entire 
space.  Thanks to this property, they can more easily find interesting local phenomena in 
the data. 

We generally recommend MaxPro designs (Joseph et al. 2020) for metamodeling.  
Depending on test-specific features, uniform designs or sliced maximin Latin hypersquare 
designs (maximin SLHDs) are recommended. 
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1. Latin Hypersquare Design
Latin hypersquare designs (LHDs) for continuous factors divide each factor into 𝑛

levels of equal length (thus dividing the factor space into 𝑛ௗ rectangular regions if there 
are 𝑑 factors), then choose combinations of these levels so that each level for each factor 
is used once, guaranteeing that all levels of each factor are seen once.  This helps ensure 
that the factors in the design are equally well-covered individually, but this requirement 
does not fully specify the design, and some designs qualify as LHDs but would not be 
considered “space filling.” 

A test planner may add another requirement to the LHD, such as finding the LHD 
that makes the minimum distance between two points in the design as large as possible. 
Such a design is an LHD-maximin design. 
2. Maximin Design

A maximin design maximizes the minimum distance between two points in the
design.  By ensuring no two points are closer to one another than they need to be, the design 
encourages points to spread throughout the space.  Such designs tend to place points near 
the borders of the factor space, and when one looks at how the design fares when one or 
more factors are dropped from consideration, the resulting design may appear to not fill 
space as well.  These issues can be alleviated by using an LHD-maximin design. 
3. Sliced Latin Hypersquare Design

Generic LHDs are for continuous factors and do not automatically incorporate
categorical factors.  SLHDs incorporate categorical factors by generating “slices” such that 
not only do we have an LHD ignoring the slices, the data within a slice also are an LHD, 
thus preserving LHD coverage properties.  The slices themselves correspond to 
combinations of the categorical factors.  As with LHDs, we can couple SLHDs with the 
maximin criterion and thus have maximin SLHDs.  A full factorial approach would assign 
all combinations of the categorical factors their own slice, but if there are many categorical 
factors, this can result in a combinatorial explosion in the number of slices and thus not 
be practical. 
4. MaxPro Design

MaxPro designs are able to ensure good factor coverage like LHDs, spread points out
like maximin designs, and handle categorical factors like maximin SLHDs.  We 
recommend MaxPro designs over maximin SLHDs because MaxPro designs can better 
handle categorical factors when the number of such factors and the study’s sample size are 
practical numbers. 

The R package MaxPro can generate such designs.  Our current process for 
generating designs with binary factors using the package is: 

1. Generate a maximin SLHD with the appropriate number of continuous factors
and some number of slices.
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2. Join the slices of the maximin SLHD with the rows of a fractional factorial 
design with the appropriate number of categorical factors and with the number 
of rows matching the number of slices in the maximin SLHD. 

3. Feed the resulting design into the MaxProQQ() function from the MaxPro 
package. 

The resulting design generated by the software is a DOE we may execute to collect 
M&S observations. 
4. Fast Flexible Filling Design 

Fast flexible filling (FFF) designs rely on clustering to select test points.  FFF designs 
can easily handle restrictions on factor combinations and categorical factors. 

Figure 7-1 visually illustrates maximin LHD, SLHD, and FFF designs.  A MaxPro 
design would resemble the maximin SLHD. 

 
Figure 7-1.  Space-filling designs.  From left to right: maximin LHD, maximin SLHD, and 
FFF.  Different colors or shapes indicate different levels of a single categorical factor. 

B. Parametric Experimental Designs: Design of Experiments for High-
Noise Metamodels 
If testers can expect highly stochastic data, we may not want to fit a nonparametric 

model.  This would be the case for models that are not purely digital, such as OITL models 
or models with physical features, such as natural models or physical models.  If this is the 
case, parametric DOE may be preferred.  These designs may care less about spreading 
points through the factor space and more about placing points in regions useful to fitting 
the desired statistical model. 
1. Factorial Design 

A full factorial design is a design in which each combination of factor levels is 
observed equally frequently.  A full factorial design can be untenable when the design has 
more than a small number of factors.  (For example, a full factorial design involving eight 
levels for each of four continuous factors would require a multiple of 4,096 runs, with the 
size growing exponentially with each additional continuous factor).  Fractional factorial 
designs, which include some of the runs seen in full factorial designs, avoid this issue.  
Hence, fractional factorial designs often are more practical and thus more common. 
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2. Response Surface Design 
Response surface designs place test points in a star orientation, with prominent 

placement of central points and points outside of a rectangular region.  These designs allow 
for fitting models consisting of terms other than linear and interaction terms, such as 
quadratic terms.  If the response variable truly has a nonlinear relationship with factors, 
this would be an important feature of the design.  We recommend these designs in low 
SNR situations with few or zero categorical factors. 
3. Optimal Design 

In this paper, an optimal design is an experimental design for a regression model.  
Optimal designs place design points in such a way that the resulting design optimizes some 
quantity of interest of the model to be fit, such as minimizing parameter standard errors.  
Optimal designs are ideal if the assumed model is valid, but they can be fragile to deviations 
from those assumptions or be far less efficient if we deviate from the parametric model 
assumed.  Generally, we recommend optimal designs if most or all factors are categorical 
and if there are restrictions on data collection. 
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8. Examples of Metamodeling with 
Generalized Additive Models and  
Gaussian Process Interpolators 

We present an analysis of a paper plane simulator, which generates flight paths for 
paper planes.  M&S analysts should easily understand this example and be able to replicate 
it; the software is small, there are no access restrictions compared to models of weapon 
systems, and most people reading this paper have thrown a paper plane at least once and 
know something about how they work.  Also, one can run this example on any modern 
personal computer.  The example represents an idealized M&S context, with the paper 
plane simulator designed specifically to allow easy metamodeling. 

The paper plane simulator is an M&S environment that solves a set of ordinary 
differential equations (ODEs) to generate flight paths for a paper airplane.17  The 
simulation tracks a plane’s velocity, flight angle, height, and range.  Gravitational force, 
air density, drag and lift coefficients, reference area (i.e., wing area), and mass contribute 
to the flight path; see Stengel (2004) for more information.  The simulator is a numerical 
ODE solver for these equations, and thus it is a fully digital and deterministic simulation.  
However, if one were to add randomness to some inputs, such as a random error in the 
initial velocity or angle of the flight, it would become a stochastic simulation.  We consider 
both cases here to demonstrate multiple techniques. 

Factors of interest include angle and airspeed.  The plane’s design factors into the 
plane’s reference area (i.e., the wing area) and the lift and drag coefficients.  Rather than 
varying these like any other continuous factor, they should be considered part of a 
categorical factor of plane design. 

                                                 
17 The ODE system is 𝑉ሶ = −𝐶஽(ρ𝑉ଶ/2)𝑆/𝑚− 𝑔 sin(γ) γሶ = (𝐶௅(ρ𝑉ଶ/2)𝑆/𝑚 − 𝑔 cos(γ))/𝑉 ℎሶ = 𝑉 sin(γ) 𝑟ሶ = 𝑉 cos(γ) 

where 𝑉, γ, ℎ, and 𝑟 are the velocity, flight angle, height, and range of the flight path, respectively (a 
dot means a derivative with respect to time); 𝐶஽ is the drag coefficient; 𝐶௅ is the lift coefficient; ρ is the 
air density; 𝑔 is the force of gravity; 𝑚 is the mass of the paper airplane; and 𝑆 is the reference area (i.e., 
wing area) of the paper airplane.  See Stengel (2004) for more information. 
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We consider three response variables: 

• The presence of a loop in the flight path, 

• The range (horizontal distance) traveled, and 

• The number of bumps in the flight path, which is a discrete outcome. 

The metamodeling of these three variables form the different examples in this section.  
We devote one example to a deterministic metamodel for flight range, and we devote three 
examples to stochastic metamodels of each of these responses. 

Cheap data generation allows many runs and easy variation, so we used a maximin 
SLHD to generate training, screening, and evaluation samples.  For the deterministic case, 
since bump and loop counts are discrete variables, we used nearest neighbor interpolation 
for prediction.  Range is a continuous variable, so we fit range with a GP using a Matérn 
kernel.  Plotting the interpolator shows its ability to discover multiple unique phenomena 
that would be difficult to discover without interpolation, such as two local extrema for the 
world-record paper airplane (WRPA) design.  Accompanying error estimates are also 
small, suggesting we achieved a good fit. 

For the stochastic simulations, we fit GAMs to all three response variables of interest, 
but we demonstrated different fitting strategies and software.  For fitting range, we used 
the R package caret; it offers an easy and fast interface for doing some common fitting 
tasks, but unfortunately it does not support many options for GAM fitting compared to 
using mgcv and taking a more manual approach, which we did for the categorical response 
variables.  We found that using a 𝑡 distribution and including initial airspeed and initial 
angle as smooth functions yielded the best fit.  We implemented a train-screen-evaluate 
split for finding a metamodel to predict loops in flight.  The best GAM we found was a 
logistic regression metamodel that uses a linear response for initial airspeed and a smooth 
term for the initial angle; the metamodel did well in predicting loops in the evaluation set, 
better than a simple prediction based only on the proportion of loops observed in the 
sample.  Finally, for predicting the number of bumps in a flight path, we used K-CV 
(specifically, 10-CV) in the training sample in addition to a train-screen-evaluate split.  The 
resulting best metamodel was a linear statistical model (without smooth terms) estimating 
the mean of a zero-inflated Poisson (ZIP) response distribution, which again demonstrates 
some superior predictive ability over simple summaries depending only on overall sample 
mean and standard deviation. 

A. Experimental Design for Paper Plane Simulator 
We created a 300-run experimental design investigating two continuous factors and 

one categorical factor: airspeed (meters per second), angle (usually stated in radians but 
sometimes in degrees), and plane design.  We consider three paper plane designs: the dart, 
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classic, and WRPA.18  Figure 8-1 shows the differences between these plane designs, 
showing both the designs explored in this paper and the designs not explored in this paper 
but supported by the software.  Initial height is fixed at 1.5 meters, and the planes are 
allowed to fly for a maximum of 15 seconds.  Initial airspeed ranges from 1 to 12 meters 
per second, and angle ranges from 60° below (−గଷ radians) to 60° above (గଷ radians) the 
horizon. 

 
Figure 8-1.  Different paper plane designs.  Boxes indicate  
the designs used in computer experiments in this study. 

Figure 8-2 shows simulator output for a plane flight. 

                                                 
18 The WRPA plane once set a Guinness world record for the longest flight, but it has since been 

overtaken by other designs. 

HAMMER DART 
CLASSIC 

WRPA BULLDOG 

HARRIER 
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Figure 8-2.  Flight paths for three different paper planes, with an initial height of 1.5 meters, 
initial airspeed of 8 meters per second, and initial angle of 40° below the horizon.  Note the 

bumps in all flight paths and a loop in the flight path of the world-record paper airplane. 

We generated a maximin SLHD experimental design, shown in Figure 8-3.  There 
are three slices because there is one categorical factor (plane design) with three levels: dart, 
classic, and WRPA.  The other factors (airspeed, angle) are continuous and thus are varied 
via the Latin hypersquare sampling scheme.  This approach should spread points roughly 
evenly throughout the space while ensuring that factors are well-covered individually to 
give us a dense data set for metamodeling.  For more information, see Wojton et al. (2021).
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Figure 8-3.  Visualization of the maximin SLHD experimental design used.   

Each dot represents where an observation for the experimental design will be collected.  
The dots are embedded in a Voronoi diagram, where all points within a cell  

are closest to the dot in the cell. 

B. Deterministic Analysis Using Gaussian Processes 
The paper plane simulator is a deterministic simulation.  The plots in Figure 8-4 show 

terminal range as well as bump and loop counts, and the plots display the counts using the 
Voronoi cells shown earlier.  While this figure looks information dense, the implied 
metamodel would be fine for the discrete response variables (bump and loop counts) but 
not for range, which we believe should be described with a continuous surface.  Hence, to 
better describe range, we use a GP. 
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Figure 8-4.  Observed response variables from the deterministic simulation using the 

sliced Latin hypersquare experimental design.  To generate this figure,  
we colored in the cells of the Voronoi diagram shown in Figure 8-3 with  

the nearest response variable’s value in the DOE.  Hence, this figure can be seen as 
showing the predictions of a nearest neighbor interpolator. 

We fit a separate, independent GP for each model of plane.  We use the R package 
GPfit for fitting the GP (MacDonald, Ranjan, and Chipman 2015).  We use GP with a 
Matérn kernel and with terminal range depending on initial airspeed and initial angle.  
Since ν cannot be estimated with GPfit, we set 𝜈 = ଽଶ, which corresponds to having four 
continuous derivatives.  The other parameters of the GP will be estimated from the data via 
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the maximum likelihood method.  While interpolation is the goal, our fit includes a small 
nugget effect for computational ease. 

After fitting the GP (shown in Figure 8-5), we can plot and consider the resulting 
interpolation.  The resulting surface is nonlinear.  The GP for the dart plane design is the 
smoothest and most regular, while the classic and WRPA plane designs feature interesting 
ridges in the surface.  WRPA also has multiple local maxima. 

 
Figure 8-5.  GP Interpolation of the Observed Simulation Ranges 

GPs yield predictions and uncertainty estimates.  We can use the estimated MSE of 
the process to create confidence bounds by adding and subtracting the square root of the 
MSE scaled by an appropriate quantile of the normal distribution19 to the predicted value 
of the range.  We can then plot the lower bound, upper bound, and width of these intervals, 
as done in Figure 8-6. 

                                                 
19 In the case of 80 percent confidence level intervals, the quantile is approximately 1.28. 
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Figure 8-6.  From Top to Bottom: the Lower Bound of the Confidence Region,  

the Upper Bound of the Region, and the Width of the Region 

Because we use an SFD, uncertainty throughout most of the parameter space is low, 
especially for the WRPA design (which has the smoothest fitted surface).  Uncertainty as 
measured by confidence interval width is highest near the edges of the input parameter 
space, which is not surprising as there are fewer outputs in these regions. 

C. Stochastic Analysis Using Generalized Additive Models 
Now we assume that the flight path depends on random initial airspeed and random 

initial angle, representing that people are unable to throw paper planes with perfect 
precision regarding either the initial speed or angle.  Specifically, the initial airspeed and 
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angle are normally distributed, with a standard deviation of 1 meter per second for airspeed 
and 15° ( గଵଶ radians) for angle.  (Now, the specified airspeed or angle is instead the mean 
airspeed or angle.)  As a result, the range, number of bumps, and number of loops in a flight 
path are random as well, though how they are affected by the random perturbation is not 
immediately obvious.20 

Our aim now is to estimate the average value of the response via smoothing.  We fit 
GAMs to describe the terminal range of the paper plane as well as count bumps and the 
presence of loops.  Terminal range is a continuous response, the presence of loops is a 
binary response, and the number of bumps is a discrete numeric response. 

For these examples, we use the same experimental design as the one used in the 
deterministic case.  Figure 8-7 plots the three outcomes. 

                                                 
20 This simulation can be characterized as ordinary differential equations (ODEs) with random initial 

conditions.  Since the ODEs and initial condition distributions are fully described, we could 
mathematically describe the distribution of the flight path’s parameters at selected points in time using 
the procedures given in Chapter 6 of Soong (1973), Liouville’s theorem in particular; from this, we 
could compute a distribution of the range. 
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Figure 8-7.  Observed response values from a stochastic paper plane simulation.   

Unlike those seen in Figure 8-4, these values are random. 

We will use the above output set as the training outputs.  We will have two other 
output sets: the evaluation output set, which we will generate later, and the screening output 
set.  We have 50 observations per model in the screening output set and 50 per model in 
the evaluation output set.  The designs for these output sets will also be maximin SLHD 
experimental designs. 

We should avoid looking at these output sets, including visualizing their results, other 
than perhaps checking that the factors are adequately varied.  Minimizing contact with 
them will preserve them as effective out-of-sample M&S output surrogates. 
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The type of response affects which distribution family to use in the metamodel, which 
in turn affects the link function and the likelihood function.  GAMs are flexible enough to 
handle these varied specifications and will be applied to all stochastic responses in these 
examples. 

Several R packages facilitate applying and exploring GAM fits.  The R package mgcv 
(Wood 2017) provides excellent formula specification, fitting specification, and diagnostic 
tools.  The caret package (Kuhn 2022) provides interfaces to facilitate model fitting while 
incorporating general purpose techniques like output splitting, CV, and others.  The caret 
package supports models provided by other packages, including mgcv, so that its routines 
can be easily incorporated into many standard statistical models.  We demonstrate 
metamodeling with GAMs using both mgcv and caret. 

The caret package fits GAMs using the train() function, its general purpose model-
fitting function capable of fitting lots of models.  For GAMs, train() will attempt to select 
the smoothness parameter and which terms in the model should be smoothed when we tell 
the function how to make these decisions. 

The R package mgcViz (Fasiolo et al. 2018) provides visualization tools for GAMs 
fitted using mgcv, and it works with the GAMs yielded by caret’s train(). 

1. Example GAM for Predicting Range of Paper Planes 
We start by developing a metamodel for range.  We have three factors to include in 

our metamodel: initial airspeed, initial angle, and plane design.  These factors can be 
incorporated in many ways, including whether and how we would account for interactions.  
We are not obligated to fit separate GAMs for each plane design, unlike in the GP case. 

First, we use a normal distribution to describe the response distribution.  To assess 
our distribution selection, we look at diagnostic plots to check for problems in the fit.  
Figure 8-8 presents a common diagnostic plot set.  The Q-Q plot compares the deviance 
residuals (a type of residual from generalized linear model theory; see Wood (2017) for 
details) to their theoretical quantiles if the distribution of the response is correctly specified.  
This relationship should be a straight line; however, we see that these residuals are 
consistently under the line on the left-hand side of the plot and consistently over the line in 
the middle of the plot. 

The histogram of the residuals should resemble a normal distribution, but there 
appear to be too many observations in the tails of the distribution than a normal distribution 
would imply. 

The residuals versus linear predictor plot should look cloudy and lack a discernable 
pattern.  Higher predictor values suggest less variability in the residuals, and midrange 
predictor values seem to be associated with higher variability in the residuals; ideally, the 
variation in the residuals should be constant throughout the range of the linear predictor. 
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Finally, when comparing the response to the predicted value, we should see a straight 
one-to-one line, with less variation around that line being better. 

 
Figure 8-8.  Diagnostic Plots of the Fitted GAM When Modeling the  

Response Variable with a Normal Distribution 

Aside from the problems seen in the diagnostic plots, other metrics for metamodel fit 
tell a better story.  The diagnostic report given by check() indicates no problems when 
estimating the GAM smooth.  As for performance, with an RMSE of 1.94 meters, an MAE 
of 1.41 meters, and an 𝑅ଶ of 75.4 percent, this fit does not look too bad, and it may be an 
adequate metamodel for the M&S environment.  When switching the response distribution, 
we should see whether these metrics change.  These metrics are all in sample, but if we 
compute the metamodel’s performance in the screening set (using the fit obtained from the 
training outputs), we get an RMSE of 1.76 meters, an MAE of 1.36 meters, and an 𝑅ଶ of 
81 percent, again not bad.  Since our goal is making a metamodel that can accurately 
predict, we should keep the metamodel that has better metrics. 

The potential problems noted above could be due to assuming a normal response 
variable with constant variance.  There are several remedial measures, including using a 
more robust model or a model for nonconstant variance.  Hence, we will try one more 
distribution, the scaled Student’s 𝑡 distribution.  The resulting diagnostic plots are shown 
in Figure 8-9.  While the nonconstant variance concerns still prevail, the plots assessing 
the appropriateness of the distribution look better, albeit not great.  This suggests that an 
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improved metamodel may jointly model the location and variance of the flight distance; 
such approaches are out of scope of this tutorial, and thus we will not consider them.  With 
an RMSE of 1.73 meters, an MAE of 1.31 meters, and an 𝑅ଶ of 82 percent (all in the 
screening outputs), the metamodel using the scaled Student’s 𝑡 distribution appears to have 
good predictive properties.  Given the other benefits, we will keep it. 

 
Figure 8-9.  Diagnostic Plots of the Fitted GAM for the Range  

but Using a t Distribution for the Response Variable 

The train() function determined which parameters should be smoothed parameters 
based on the number of unique levels in the parameter, not metamodel selection metrics 
such as AIC or BIC; hence, for GAMs as described in this paper, metamodel selection is 
not innately supported by caret.21  To our knowledge, train()’s model determination 
procedure allows only univariate functions to appear in the GAM, precluding multivariate 
smoothing surfaces for M&S factors.  For now, we will accept the metamodel generated 
by train(), but later we will use mgcv to fit and explore more complex metamodels. 

Plots are useful for understanding the fitted effects.  Figure 8-10 is an example.  These 
plots show the marginal effect of initial airspeed and initial angle on terminal range.  The 

                                                 
21 The gamboost models in caret do support feature selection.  These are GAMs using a procedure known 

as boosting; see Hastie, Tibshirani, and Friedman (2009). 
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grey error bands show pointwise confidence bounds, meaning confidence intervals 
describing uncertainty about the response function’s value for particular airspeeds or 
particular angles, as appropriate.  Recall that identifiability conditions for GAMs require 
that the integral of these functions each be 0; the values on the vertical axis of the plots 
reflect this requirement.  To predict the terminal range of a paper plane from these plots, 
add the value of the curve at a selected initial airspeed and initial angle to a coefficient 
dependent on the plane design—approximately 9.3 meters for the dart design, 7.4 meters 
for the classic design, and 11.3 meters for the WRPA design.  Hence, based on eyeballing 
the chart, if we threw a dart plane at an initial airspeed of 2.5 meters per second level to 
the ground, we would predict the plane would fly about 6.2 meters by starting with the 
baseline number for the dart plane (approximately 9.3 meters), adding the contribution of 
the initial airspeed at 2.5 meters per second (approximately −4.2 meters), and adding the 
contribution for throwing at a level angle (approximately 1.1 meters).  Without considering 
the baselines for each plane design, the plots tell us how much terminal range changes 
when we compare potential factor levels; for example, doubling the initial airspeed from 
2.5 meters per second to 5 meters per second increases the terminal range of any of the 
planes by approximately 6 meters on average. 

 
Figure 8-10.  Estimated Response Functions for the GAM Predicting  

Paper Plane Terminal Range 

The shapes of the functions also tell a story.  For instance, the optimal angle to 
maximize range seems to be near zero.  The relationship between initial angle and terminal 
range appears mostly but not quite symmetrical; in particular, the highest angle appears to 
have a considerably lower terminal range on average than the lowest angle.  (We could fit 
a GAM that assumes a symmetric relationship and perform a hypothesis test to determine 
if the relationship is symmetrical, but we do not do so in this tutorial; Wood (2017) 
demonstrates such testing.)  The launch airspeed’s effect on range diminishes around 
7.5 meters per second, and the change appears abrupt.  Combining these functions with the 
categorical effects yields a surface of predicted values, as shown in Figure 8-11. 
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Figure 8-11.  Prediction Surfaces for Terminal Range Using the Fitted GAM 

If we create a calibration plot estimating a smooth relationship between observed and 
predicted values, we can get a better sense of whether the metamodel is miscalibrated and 
for what predicted values.  Figure 8-12 shows that while the metamodel is mostly correctly 
calibrated, there are regions where it seems to predict the M&S output poorly.  In particular, 
the variation in predictions does not appear to be constant; there’s more variation for larger 
predicted terminal ranges (over 10 meters) than for predicted terminal ranges in middle 
regions (between 5 and 10 meters).  However, the predictions appear to be correct on 
average throughout the factor space. 

 
Figure 8-12.  Calibration Plot for Observed versus Predicted Terminal Range 

To assess lack of calibration, we conduct a statistical test at the 80 percent confidence 
level.  We can conclude there is not statistically significant evidence for miscalibration 
(𝑝 ≈ 0.7674).  The confidence intervals tell us the difference may be greatest at moderate 
predicted values, but overall the metamodel makes good predictions. 
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At this point, we have decided to use the GAM fitted by train() with the chosen family 
being the scaled 𝑡 distribution.  Now we can quantify final performance of the fitted 
metamodel in the evaluation set.  In the evaluation outputs, the metamodel has an RMSE 
of 1.94 meters, an MAE of 1.48 meters, and an 𝑅ଶ of 76 percent.  These metrics did not 
change much from the training output metrics, suggesting we likely avoided overfitting 
while having a metamodel with reasonably good predictive performance.  The calibration 
curve given in Figure 8-13 similarly suggests the model is well-calibrated; the 
corresponding statistical test does not reject the possibility of the identity relationship for 
the calibration curve (𝑝 ≈ 0.3266). 

 
Figure 8-13.  Calibration Plot for Observed versus Predicted  

Terminal Range in the Evaluation Set 

2. Example GAM for Predicting Loops of Paper Plane Paths (Bernoulli Response) 
In this example, we focus more on metamodel comparison to demonstrate some of 

the metamodel evaluation techniques from Section 6.  We will create a metamodel for 
predicting loops.  This is a binary response. 

Before metamodeling, we should compute some basic summary statistics, such as 
those shown in Tables 8-1 and 8-2.  These statistics establish a baseline predictive ability 
for any model we construct; if a model cannot beat a simple classifier of “predict the most 
common label for that group,” the model should not be used.  In the training data, 
38 percent of flights had a looping flight path.  Further breaking down the data from 
Table 8-1, 40 percent of dart plane flights had a loop, 25 percent of classic plane flights 
had a loop, and 48 percent of WRPA flights had a loop.  We further disaggregate the data, 
as shown in Table 8-2, by splitting the continuous factors, initial airspeed and angle, into 
high and low categories and similarly computing proportions.  That level of disaggregation, 
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though, is harder to comprehend and thus less useful for establishing a baseline metamodel 
performance expectation. 

Table 8-1.  Within-Group Proportions of Loops in Data Subsets by Model Type 

Design Loop Probability Sample Size 
Dart 0.40 100 

Classic 0.25 100 
WRPA 0.48 100 

 
Table 8-2.  Within-Group Proportions of Loops in Data Subsets by Factor 

Design Airspeed 
Groupa 

Angle 
Groupb 

Loop 
Probability 

Sample 
Size 

Dart Low Low 0 24 
Dart Low High 0.0769 26 
Dart High Low 0.654 26 
Dart High High 0.875 24 

Classic Low Low 0 23 
Classic Low High 0.037 27 
Classic High Low 0.259 27 
Classic High High 0.739 23 
WRPA Low Low 0.037 27 
WRPA Low High 0.087 23 
WRPA High Low 0.826 23 
WRPA High High 0.963 27 

a Airspeed split into low and high based on being below or above 6.5 meters per second. 
b Angle split into low and high based on being below or above 0 radians. 

 
This time we will use mgcv directly for metamodel fitting so we can have more 

control.  We considered 30 models for fitting, varying the following choices we could 
make: 

• The functional form of the additive model.  All candidate forms are listed in 
Table 8-3. 

• The distribution the outputs are assumed to follow.  While at first glance the 
data are clearly binary (since we either do or do not see a loop) and should be 
modeled with the binomial distribution, logistic regression-type procedures like 
those considered here can handle a phenomenon known as overdispersion using 
the quasibinomial distribution.  See McCullagh and Nelder (1989) for more 
information on overdispersion and why it needs to be accounted for.  Hence, in 
addition to modeling the response with the binomial distribution, we consider 
the quasibinomial distribution. 
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• The link function used, either the logistic, probit (inverse standard normal 
cumulative distribution function), or complementary log-log (CLL) link 
function.  Formulas for these link functions are given in Table 8-4. 

Table 8-3.  Model Forms Considered for Loops in Paper Plane Flights 

Description Functional Forma 
Smooth Main 

Effects 𝜂൫𝑃(loop௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝑓as(airspeed௜) + 𝑓an(angle௜)  
Smooth 

Interaction 𝜂൫𝑃(loop௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝑓as,an(airspeed௜, angle௜)  
Plane Design-

Specific 
Smooth Terms 

𝜂൫𝑃(loop௜)൯ = 𝛽଴ + 𝑓as(airspeed௜) + 𝑓an(angle௜)+ ቀ 𝑓as,cl(airspeed௜) + 𝑓an,cl(angle௜)ቁ classic௜+ ቀ 𝑓as,wr(airspeed௜) + 𝑓an,wr(angle௜)ቁwrpa௜  
Smooth 

Saturated 
𝜂൫𝑃(loop௜)൯ = 𝛽଴ + 𝑓as,an(airspeed௜ , angle௜) + 𝑓as,an,cl(airspeed௜ , angle௜)classic௜+ 𝑓as,an,wr(airspeed௜ , angle௜)wrpa௜  

Fully Linear 
Main Effects 𝜂൫𝑃(loop௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝛽asairspeed௜ + 𝛽anangle௜  

a 𝜂 is the link function, in this example either the logistic, probit, or CLL link function.  𝑃(loop௜) is the probability 
of a loop for observation 𝑖.  Coefficients for linear terms are denoted with β.  Smooth functions are denoted 
with 𝑓.  Subscripts for coefficients or smooth terms indicate what factors that coefficient or smooth term are 
for and whether it is an interaction term.  classic୧ and wrpa୧  are indicator variables, meaning they equal 1 
if observation 𝑖 is a plane of that design and equal 0 otherwise.  airspeed୧ and angle୧ are numeric and equal 
to the value of the initial airspeed or initial angle of the plane for that observation. 

 
Table 8-4.  Link Functions for Regression on Binary Data 

Name Formula 

Logistica 𝜂(𝑝) = log ቀ ௣ଵି௣ቁ b 

Complementary 
Log-Log (CLL) 𝜂(𝑝) = log(− log(1 − 𝑝)) 

Probit 𝜂(𝑝) = Φିଵ(𝑝) c 
a The logistic link function is the canonical link function for the binomial distribution.  See McCullagh and 

Nelder (1989) for more information on the significance of canonical link functions. 
b log  is the natural logarithm, or log(e) = 1. 
c Φ is the cumulative distribution function of the normal distribution function. 

 
We fit a GAM for each combination of distribution, link function, and functional 

form.  We estimate smooth functions using univariate thin-plate splines for air speed and 
angle.  mgcv can use n-CV to choose the smoothing parameter, though we use here only 
our preference, the restricted maximum likelihood (REML) approach.  After fitting, we 
compute the in-sample BIC and the out-of-sample Brier score, accuracy, recall, and 
precision for each metamodel, using the screening output set as the out-of-sample outputs.  
Not all metamodels are easily estimable; hence, an easy way to cut down our options is to 
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remove any metamodel for which we could not compute a BIC.  We then investigate the 
three estimated metamodels with the best BIC, Brier, and accuracy score among those 
estimated.  We see the final metamodels and their associated metrics in Table 8-5. 

Table 8-5.  Evaluation Metrics for Model Candidates Fitting Flight Loops 

Formula Distribution Link BIC OOS 
Brier 

OOS 
Accuracy 

OOS 
Recall  

(No 
Loop) 

OOS 
Recall 
(Loop) 

OOS 
Precision 

(No 
Loop) 

OOS 
Precision  

(Loop) 

Smooth 
Main 
Effects 

Binomial Logit 163.516 0.063 0.92 0.97 0.86 0.90 0.95 

Smooth 
Main 
Effects 

Binomial Probit 171.206 0.061 0.90 0.95 0.83 0.88 0.93 

Smooth 
Main 
Effects 

Binomial CLL 148.437 0.067 0.90 0.97 0.81 0.87 0.95 

Note: OOS means out of sample. 

 
The metamodel the BIC recommends is a GAM using a binomial distribution as the 

response distribution, a CLL link function, and smooth main effects with no interactions.  
The other metrics of interest—accuracy, precision, and recall—look good for this 
metamodel.  The three metamodels proposed differ only in the chosen link function, with 
functional form and distribution being the same.  We will select the metamodel with the 
lowest BIC for further refinement. 

While the evaluation metrics are high for our chosen metamodel, plotting the smooth 
terms in the metamodel reveals opportunities to improve it.  In Figure 8-14, we see the 
function linking initial airspeed to the response is almost perfectly linear.  This linearity 
suggests we may want to change this term in our model from an arbitrary smooth function 
to a linear effect.  We will keep all other parameters suggested by our metamodel selection 
procedures.  This change makes the metamodel even simpler.  Note that this implies the 
final functional form used is not listed in Table 8-3; it is 𝜂 ቀ𝑃൫loop௜൯ቁ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝛽anangle௜  + 𝑓as൫airspeed௜൯, 
where 𝜂 is the CLL function. 
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Figure 8-14.  Estimated Response Functions for the GAM Predicting  

Paper Plane Probability of Looping 

The final model is summarized by mgcv.  Table 8-6 reports model results.  
Figure 8-15 shows the loop prediction regions. 

Table 8-6.  Metamodel Parameter Estimates and Metrics for the  
Presence of a Loop in a Paper Plane Flight Path 

Parametric Coefficients Estimate Std. Errora t-value p-value 𝜷𝟎 −9.1928 1.2070 −7.6164 < 0.0001 𝜷cl −1.9537 0.4641 −4.2096 < 0.0001 𝜷wr 1.1033 0 .4171 2.6450 0.0082 𝜷as 1.1487 0.1491 7.7029 < 0.0001 
Smooth Terms EDFb Ref. DFc F-value p-value 𝒇as(airspeed) 2.3447 2.9167 30.7587 < 0.0001 
Model Metrics Dev. Exp.d Adj. 𝑹𝟐 −REMLe Scale 

 72.6% 0.775 30.7587 1 

a The standard error of parameter estimates. 
b Estimated degrees of freedom. 
c Reference degrees of freedom. 
d Deviance explained. 
e Restricted maximum likelihood. 

 



 

8-21 

 
Figure 8-15.  Prediction Regions for the GAM Modeling Probability of Looping 

Unfortunately, the parameters of the chosen model are not easily interpreted when 
using a CLL link function, but the sign22 of the coefficients can still tell us whether a loop 
is more or less likely under certain conditions.  In this case, we learn that the classic planes 
are less likely overall to generate a loop and the world-record planes are most likely.  
Higher initial airspeed makes a loop more likely.  Higher initial angles make loops more 
likely than with lower initial angles, but in a nonlinear way; loops become more likely the 
higher the angle is when the angle is above the horizon, but low angles seem to have a 
roughly constant probability of generating a loop. 

The in-sample calibration curve in Figure 8-16 suggests the model predicts loops 
well.  One would hope that would be the case for in-sample data.  The calibration curve for 
the validation data, though, looks terrible, but is this due to the model actually being 
miscalibrated in the validation set or to bad smoothing in the calibration curve?  A smooth 
fit via a different method23 does not look as bad, as seen in Figure 8-17, but it is not perfect 
either.  These issues could prompt further investigation into why the calibration curves do 
not look good.  We do not do so here as those issues are out of scope for this paper. 

                                                 
22 The sign of a number denotes whether the number is positive or negative. 
23 The second calibration curve fit in the validation data set uses a locally estimated scatterplot smoothing 

(LOESS) smoother from the R package gam.  This smoother is fit via different methods than those 
described in this paper, based on a moving average-type procedure rather than penalized regression.  
This smoother generates a calibration curve that more closely resembles that of Haman and Johnson 
(2022), and it fits into the original GAM fitting procedures proposed by Hastie and Tibshirani (1986). 
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Figure 8-16.  Calibration plots of the selected loop model in both the training  

and screening output sets.  The smoothed calibration curve obtained  
for the validation set seems implausible. 

 

 
Figure 8-17.  Calibration Curve Estimated via a Different Smoothing Technique,  

Locally Estimated Scatterplot Smoothing (LOESS) 

Having decided on our model, we evaluate its performance in the evaluation set.  
Fortunately, there is no strong evidence of degradation; we observe an accuracy of 
89 percent, a recall rate of 92 percent for no loops and 83 percent for loops, a precision of 
89 percent for no loops and 88 percent for loops, and a Brier score of 0.11.  If we had 
predicted simply the most common outcome observed (no bump), we would be correct 
62 percent of the time overall, and Table 8-1 suggests our predictive capability would max 



 

8-23 

at 75 percent.  This suggests our model was not a waste of effort and that it improved 
predictive performance over a simple rule of predicting the most common outcome.  The 
calibration curve given in Figure 8-18 looks good.  This metamodel appears to be an 
effective summary of the M&S environment. 

 
Figure 8-18.  Calibration Plot for the Loop Model in the Test Data Set 

3. Example GAM for Predicting the Number of Bumps in a Paper Plane Path 
(Count Data Response) 
Our last metamodel treats bumps as the response variable.  The responses are counts 

and thus different distributional families are involved in modeling. 

We explore the following GAM metamodeling options in this example: 

• Which distribution to treat as describing the count data, including Poisson, 
quasi-Poisson (which is Poisson but allows for overdispersion), ZIP (which 
allows the probability of no bumps to be greater than specified by an unadjusted 
Poisson distribution), and negative binomial.  We will not vary link function use 
and instead will use the default link function for each candidate response 
distribution. 

• Use of GCV or REML for smoothing parameter selection. 

• The functional form of the additive model.  All candidate functional forms are 
listed in Table 8-7. 
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Table 8-6.  Model Forms Considered for Bump Counts in Paper Plane Flights 

Description Functional Forma 

Smooth Main 
Effects 𝜂൫𝐸(bump௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝑓as(airspeed௜) + 𝑓an(angle௜)  
Smooth 

Interaction 𝜂൫𝐸(bump௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝑓as,an(airspeed௜ , angle௜)  
Plane Design-

Specific Smooth 
Terms 

𝜂൫𝐸(bump௜)൯ = 𝛽଴ + 𝑓as(airspeed௜) + 𝑓an(angle௜)+ ቀ fas,cl(airspeed௜) + fan,cl(angle௜)ቁ classic௜+ ቀ fas,wr(airspeed௜) + fan,wr(angle௜)ቁwrpa௜  
Smooth 

Saturated 
𝜂൫𝐸(bump௜)൯ = 𝛽଴ + 𝑓as,an(airspeed௜ , angle௜) + 𝑓as,an,cl(airspeed௜ , angle௜)classic௜+ 𝑓as,an,wr(airspeed௜ , angle௜)wrpa௜  

Fully Linear  
Main Effects 𝜂൫𝐸(bump௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝛽asairspeed௜ + 𝛽anangle௜  

Saturated  
Linear Model 

𝜂൫𝐸(bump௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝛽asairspeed௜ + 𝛽as,clairspeed௜×classic௜+ 𝛽as,wrairspeed௜×wrpa௜ + 𝛽anangle௜ + 𝛽an,clangle௜×classic௜+ 𝛽an,wrangle௜×wrpa௜ + 𝛽as,anairspeed௜×angle௜  
Linear Model with 
Airspeed-Angle 

Interaction 

𝜂൫𝐸(bump௜)൯ = 𝛽଴ +  𝛽clclassic௜ + 𝛽wrwrpa௜ + 𝛽asairspeed௜ + 𝛽anangle௜+ 𝛽as,anairspeed௜×angle௜  
a 𝜂 is the link function, depending on the distribution used for describing the response.  𝐸(bump௜) is the expected 

number of bumps for observation 𝑖.  Coefficients for linear terms are denoted with 𝛽.  Smooth functions are denoted 
with 𝑓.  Subscripts for coefficients or smooth terms indicate what factors that coefficient or smooth term are for and 
whether it is an interaction term.  classic௜ and wrpa௜  are indicator variables, meaning they equal 1 if observation 𝑖 
is a plane of that design and equal 0 otherwise.  airspeed௜ and angle௜ are numeric and equal to the value of the 
initial airspeed or initial angle of the plane for that observation. 

 
We did not use K-CV in our loop prediction example, but we involve it more here.  

CV will generate a distribution of performance metrics representing out-of-sample 
performance rather than a single number; this means that the evaluation of a metamodeling 
approach will be based on a summary of the CV results, and we can study the resulting 
distributions to obtain a better sense of how much uncertainty there is in selecting a 
metamodeling approach. 

We first establish a baseline understanding of the M&S output set with summary 
statistics.  We look at the mean number of bumps and the standard deviation of the bump 
count; for the response variable we are considering, these are good metric choices.  We 
present the summary statistics in Tables 8-8 and 8-9.  The classic plane design has the 
lowest average number of bumps, at 1.27 bumps in a flight path; the dart design comes in 
second with 1.8 bumps; and the WRPA design has the most, with 2.56 bumps.  The 
standard deviations for these designs are 0.75, 0.866, and 1.15 bumps, respectively.  Of 
these statistics, the standard deviation is the more noteworthy, since if the RMSE exceeds 
the standard deviation, the model likely makes terrible predictions. 
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Table 8-7.  Within-Group Bump Count Metrics in Data Subsets by Model Type 

Design Mean Bumps Bump Std. Dev. Sample 
Size 

Dart 1.76 0.866 100 
Classic 1.27 0.75 100 
WRPA 2.56 1.15 100 

 
Table 8-8.  Within-Group Bump Count Metrics in Data Subsets by Factor 

Design Airspeed Groupa Angle Groupb Mean Bumps Bump  
Std. Dev. Sample Size 

Dart Low Low 0.708 0.55 24 
Dart Low High 1.62 0.571 26 
Dart High Low 2.15 0.543 26 
Dart High High 2.54 0.509 24 

Classic Low Low 0.435 0.59 23 
Classic Low High 1.07 0.616 27 
Classic High Low 1.74 0.447 27 
Classic High High 1.78 0.422 23 
WRPA Low Low 1.63 1.28 27 
WRPA Low High 2.09 0.848 23 
WRPA High Low 3.09 0.668 23 
WRPA High High 3.44 0.506 27 

a Airspeed split into low and high based on being below or above 6.5 meters per second. 
b Angle split into low and high based on being below or above 0 radians. 

 
We use 10 folds for CV (abbreviated as 10-CV).  These folds are unchanging 

throughout the fits.  With 10 folds, we can consider not only which metamodel seems to 
do best according to 10-CV metrics but also how much the metrics we study vary. 

After fitting all the candidates, we will narrow down the metamodels to those with 
the smallest median BIC, smallest median out-of-sample MSE, and smallest median out-
of-sample MAE.  We will also consider the distribution of BIC, MSE, and MAE in the 
10-CV samples when making our selection to assess metric variability.  A plot easily 
facilitates such assessments.  Table 8-10 presents candidate models and their associated 
metrics.  Figure 8-19 visualizes the distribution of these metrics in the 10-CV samples. 
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Table 8-9.  Candidate Generalized Additive Models for the Bump Count Data  
with Goodness-of-Fit Metrics 

Formula Distribution Smoothing 
Penalty Method BIC OOS 

RMSEa 
OOS 
MAE 

Smooth 
Interaction Poisson REML 747.893 0.526 0.193 

Smoothed 
Interaction ZIP GCV-Cpb 702.299 0.540 0.187 

Smoothed 
Interaction ZIP REML 702.299 0.540 0.187 

Linear Model with 
Airspeed-Angle 

Interaction 
ZIP GCV-Cp 684.814 0.547 0.194 

Linear Model with 
Airspeed-Angle 

Interaction 
ZIP REML 684.814 0.547 0.194 

a Out-of-sample root mean-squared error. 
b Generalized cross-validation with Mallows C୮. 

 

 
Figure 8-19.  Metric values observed in 10-CV folds.   

OOS means out of sample, and ZIP means zero-inflated Poisson. 
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We chose five metamodels for the final candidates, but four are redundant.  The plots 
reveal that REML and 10-CV generated identical metamodels, since the 10-CV metric 
distributions are identical.  There was one exception, where only the model obtained via 
the REML smoothing parameter selection appeared as a candidate (when the distribution 
family is Poisson). 

After we eliminate the duplicate metamodels, we see that two of the three final 
metamodels use the ZIP distribution as the distribution of the data.  Of the three metrics, 
BIC seems the most decisive when one considers the variation in the metrics across the 
10-CV samples.  RMSE and MAE have very similar distributions across metamodels, 
while BIC is clearly smaller for the linear metamodel that interacts airspeed and angle but 
treats the paper plane design as a simple additive effect; it is the simplest model of the three 
candidate metamodels.  Hence, it seems that BIC prefers the linear model on the basis of 
its simplicity, as the smoothing models (which are smooth surfaces, interacting airspeed 
and angle) lack convincingly better predictive performance than the simple linear model.  
Furthermore, the RMSE is smaller than the standard deviations in our earlier baseline 
estimates, suggesting that the model has some predictive ability. 

Hence, the 10-CV results suggest a generalized linear model interacting airspeed and 
angle.  We fit the final metamodel using the full training sample instead of the 10-CV 
samples.  As an additional check before seeing our results on the evaluation set, we check 
the metamodel’s predictive performance in the screening output set.  If we see significant 
degradation in the RMSE and MAE, we could have an overfitted metamodel that will not 
generalize well. 

Figure 8-20 presents diagnostic plots we use to further assess metamodel 
performance.  These diagnostic plots do not suggest we have obtained a good fit; the Q-Q 
plot and the residual histogram, in particular, suggest that the distribution of the response 
variable is not correct.  Such pathologies would be reason to further explore our 
metamodeling options.  We will not do so now and will ignore these warning signs, since 
attempting a fix is outside the scope of this paper.  Metrics relating to the metamodel’s 
predictive ability look better.  The metamodel explains 75.9 percent of the deviance in the 
training data.  The in-sample RMSE is 0.6 bumps and the in-sample MAE is 0.4 bumps.  
In the screening output set, the metamodel’s RMSE is 0.5 bumps and the MAE is 0.4.  
These numbers do not suggest there is any overfitting.  Table 8-11 gives more information 
about the fit. 
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Figure 8-20.  Diagnostic Plots of the Zero-Inflated Poisson Model  

for the Number of Bumps in a Paper Plane Flight Path 
 

Table 8-11.  Metamodel Parameter Estimates and Metrics  
for the Number of Bumps in a Paper Plane Flight Path 

Parametric 
Coefficients Estimate Std. Error t-value p-value 𝜷𝟎 −0.9306 0.1120 −8.3052 < 0.0001 𝜷cl −0.3937 0.1065 −3.6956 0.0002 𝜷wr 0.4370 0.1009 4.3320 < 0.0001 𝜷as 0.1711 0.0129 13.2789 < 0.0001 𝜷an 0.7700 0.1627 4.7315 < 0.0001 𝜷as,an −0.0654 0.0211 −3.1038 0.0019 

Model  
Metrics 

Deviance  
Explained ZIP Intercept ZIP Slope ZIP 𝒃 

 75.9% 1.246 0.587 0 
 

The selected distribution of the response variable uses the identity link function, which 
means that we can directly interpret the parameters of the linear metamodel.  However, we 
should still exercise caution since the mean of the response variable should still be positive, 
and a naïve interpretation of predictions could lead us to infer negative means. 
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The classic plane design has, on average, 0.4 fewer bumps than the dart model (the 
baseline), while the WRPA design has 0.4 more bumps on average.  The effects of the 
initial airspeed and initial angle are harder to interpret because of the interaction term.  It 
is small relative to the angle effect and thus we can say that, within the range of the data 
we observed, for every radian increase in initial angle, a plane sees, on average, 0.8 more 
bumps.24  The magnitude of the airspeed effect resembles the magnitude of the interaction 
term’s effect, making such interpretations harder, but in general we see, on average, more 
bumps with higher airspeeds.  The interaction term seems to mostly dampen what 
otherwise is an increasing number of bumps as we increase both initial airspeed and initial 
angle.  The plots of the surface and predicted values given in Figure 8-21 show the 
increasing number of predicted bumps as we increase both initial angle and initial airspeed. 

 
Figure 8-21.  Prediction surface for the number of bumps in a paper plane  

flight path estimated by the zero-inflated generalized linear model.   
The top plots do not have the predictions rounded (allowing for decimal number 

predictions, interpreted as the average number of bumps in a flight path),  
while the bottom plots are rounded to the nearest integer. 

Calibration curves in the training and screening samples, shown in Figure 8-22, 
suggest the model is reasonably well-calibrated.  The corresponding ANOVA statistical 

                                                 
24 In degrees, that is 0.01 bumps per degree. 
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tests would disagree (with p-values near 0) and suggest a nonidentity relationship between 
observed and predicted values; the plots suggest that if there is miscalibration, it would be 
near the ends of the observed range, with the predicted number of bumps perhaps being off 
by half a bump or more. 

 
Figure 8-22.  Calibration Curves for the Bump Model,  

Both in the Training Sample and the Validation Sample 

That said, the metamodel seems to predict outcomes somewhat well, so we check the 
model’s performance in the evaluation set.  There, we observe an RMSE of 0.5 bumps and 
an MAE of 0.4 bumps.  This is lower than the observed variation in the M&S observations 
and variation in the subsets shown in Table 8-9.  The calibration curve, seen in Figure 8-23, 
is similar to what was seen in the validation sample, which we deemed acceptable before 
and which again suggests the metamodel’s predictive abilities have not changed when 
moving to out-of-sample outputs.  These checks all bode well for the final metamodel’s 
predictive capabilities. 
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Figure 8-23.  Calibration Curves for the Bump Model  

in the Evaluation Output Set
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9. Conclusions 

Metamodeling is a mature methodology for analyzing M&S environments and their 
outputs, one that provides rich information about the system’s performance.  The 
metamodel can provide information about M&S characteristics by describing the M&S 
environment’s behavior.  It can also be a key component in solving other problems, such 
as finding optimal settings under which the modeled system performs, calibrating the M&S 
environment’s settings to best mimic real-world behavior, or inferring from observed data 
the values of important parameters.  It may be a useful product in and of itself by replacing 
the M&S from which it was trained in contexts where speed or understandability matter, 
such as exercises, wargames, other M&S environments, and perhaps even real tactical 
decisions. 

Metamodeling resembles other statistical modeling and prediction activities.  We 
cannot claim to have exhaustively described all the modeling techniques that could be used 
because that would fill books; Hastie, Tibshirani, and Friedman (2009) offer many models, 
including those discussed here, that one could apply.  Even the two methods emphasized 
in this paper—GPs and GAMs—are still actively researched and have many extensions; 
see Gramacy (2020) for more information about GPs and Wood (2017) for more 
information about GAMs.  Hence, this paper is not the end point but a useful starting point 
and standard from which build metamodels. 

Our examples also give standards by which to judge models.  No single process was 
applied as a recipe.  The statistical fitting process generally never is—and never should 
be—purely algorithmic, without any intervention by a person; to quote DOT&E (2017), 
“There is no cookbook approach.”  The result of unthinking analysis is “cargo-cult 
statistics” (Stark and Saltelli 2018), the imitation of statistical procedures and methods 
without understanding why to apply them, what the results mean, and under what 
circumstances to avoid them.  Statisticians are not algorithmic when analyzing data, 
looking at lots of different metrics and strategies and considering the story each one tells 
and their individual weaknesses, which then inform the statistician’s overall opinion.  One 
should read the examples not just to see the procedures used but also to appreciate the story 
of how one goes from an M&S ready for analysis to a final metamodel with reasonable 
descriptive and predictive abilities.  We always encourage a thoughtful approach. 



 

R-1 

References 

Abramowitz, Milton, and Irene A. Stegun, eds. 1972. Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables. 9th ed. New York, 
NY: Dover. 

Anderssen, R. S., and Peter Bloomfield. 1974. “A Time Series Approach to Numerical 
Differentiation.” Technometrics 16, no. 1 (February): 69–75. 
https://doi.org/10.2307/1267494. 

Bernardo, José M., and Adrian F. M. Smith. 1994. Bayesian Theory. West Sussex, 
England: Wiley. 

Commander, Operational Test and Evaluation Force. 2022. “Use of Modeling and 
Simulation in Operational Test.” OPTEVFOR Instruction 5000.1D. Norfolk, VA: 
U.S. Navy. 

Craven, Peter, and Grace Wahba. 1979. “Smoothing Noisy Data with Spline Functions.” 
Numerische Mathematik 31 (December): 377–403. 

de Boor, Carl. 1978. A Practical Guide to Splines. New York, NY: Springer. 
Defense Modeling and Simulation Enterprise. Last updated September 15, 2020. “M&S 

Glossary.” https://www.msco.mil/MSReferences/Glossary/MSGlossary.aspx. 
Derksen, Shelley, and H. J. Keselman. 1992. “Backward, Forward and Stepwise 

Automated Subset Selection Algorithms: Frequency of Obtaining Authentic and 
Noise Variables.” British Journal of Mathematical and Statistical Psychology 45, 
no. 2 (November): 265–282. https://doi.org/10.1111/j.2044-8317.1992.tb00992.x. 

DOT&E (Director, Operational Test and Evaluation). 2016. “Guidance on the Validation 
of Models and Simulation Used in Operational Test and Live Fire Assessments.” 
Washington, DC: DOT&E. https://www.dote.osd.mil/Portals/97/pub/policies/ 
2016/20140314_Guidance_on_Valid_of_Mod_Sim_used_in_OT_and_LF_Assess_ 
(10601).pdf?ver=2019-08-19-144201-107. 

DOT&E (Director, Operational Test and Evaluation). 2017. “Clarifications on Guidance 
on the Validation of Models and Simulation Used in Operational Test and Live Fire 
Assessments.” Washington, DC: DOT&E. https://www.dote.osd.mil/Portals/97/pub/ 
policies/2017/20170117_Clarification_on_Guidance_on_the_Validation_of_ 
ModSim_used_in_OT_and_LF_Assess(15520).pdf?ver=2019-08-19-144121-1237. 

Duchon, Jean. 1977. “Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev 
Spaces.” Chap 7 in Constructive Theory of Functions of Several Variables, edited 
by Walter Schempp and Karl Zeller, 85–100. Berlin, Germany: Springer. 

Eilers, Paul H. C., and Brian D. Marx. 1996. “Flexible Smoothing with B-Splines and 
Penalties.” Statistical Science 11, no. 2 (May): 89–121. 
https://doi.org/10.1214/ss/1038425655. 



 

R-2 

Fasiolo, Matteo, Raphaël Nedellec, Yannig Goude, and Simon N. Wood. 2018. “Scalable 
Visualisation Methods for Modern Generalized Additive Models.” Arxiv Preprint. 
https://arxiv.org/abs/1809.10632. 

Gramacy, Robert B. 2020. Surrogates: Gaussian Process Modeling, Design, and 
Optimization for the Applied Sciences. Boca Raton, FL: CRC Press. 

Haman, John T., Thomas H. Johnson, David Grimm, Kerry Walzl, and Lindsey Butler. 
2022. Predicted Probabilities Validation. Alexandria, VA: Institute for Defense 
Analyses. 

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of 
Statistical Learning: Data Mining, Inference and Prediction. 2nd ed. New York, 
NY: Springer. http://www-stat.stanford.edu/ tibs/ElemStatLearn/. 

Hurvich, Clifford M., and Chih-Ling Tsai. 1989. “Regression and Time Series Model 
Selection in Small Samples.” Biometrika 76, no. 2: 297–307. 

Hurvich, Clifford M., and Chih-Ling Tsai. 1990. “The Impact of Model Selection on 
Inference in Linear Regression.” The American Statistician 44, no. 3 (August): 214–
217. https://doi.org/10.2307/2685338. 

Joseph, V. Roshan, Evren Gul, and Shan Ba. 2020. “Designing Computer Experiments 
with Multiple Types of Factors: The MaxPro Approach.” Journal of Quality 
Technology 52, no. 4: 343–354. https://doi.org/10.1080/00224065.2019.1611351. 

Kang, Xiaoning, and Xinwei Deng. 2020. “Design and Analysis of Computer 
Experiments with Quantitative and Qualitative Inputs: A Selective Review.” WIREs 
Data Mining and Knowledge Discovery 10, e1358 (January): 1–9. 
https://doi.org/10.1002/widm.1358. 

Kim, Young-Ju, and Chong Gu. 2004. “Smoothing Spline Gaussian Regression: More 
Scalable Computation via Efficient Approximation.” Journal of the Royal Statistical 
Society Series B 66, no. 2: 337–356. 

Koenker, Roger. 2011. “Additive Models for Quantile Regression: Model Selection and 
Confidence Bands.” Brazilian Journal of Probability and Statistics 25, no. 3 
(November): 239–262. https://doi.org/10.1214/10-BJPS131. 

Kuhn, Max. Published August 9, 2022. “Caret: Classification and Regression Training.” 
https://CRAN.R-project.org/package=caret. 

MacDonald, Blake, Pritam Ranjan, and Hugh Chipman. 2015. “GPfit: An R Package for 
Fitting a Gaussian Process Model to Deterministic Simulator Outputs.” Journal of 
Statistical Software 64, no. 12 (April): 1–23. https://doi.org/10.18637/jss.v064.i12. 

Mallows, C. L. 1973. “Some Comments on 𝑐௣.” Technometrics 15, no. 4 (November): 
661–675. https://doi.org/10.2307/1267380. 

Mantel, Nathan. 1970. “Why Stepdown Procedures in Variable Selection.” 
Technometrics 12, no. 3 (August): 621–625. https://doi.org/10.2307/1267207. 

Matheron, G. 1963. “Principles of Geostatistics.” Economic Geology 58, no. 8 
(December): 1246–1266. http://dx.doi.org/10.2113/gsecongeo.58.8.1246. 



 

R-3 

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London, UK: 
Chapman and Hall. 

Müller, Hans-Georg, and Fang Yao. 2008. “Functional Additive Models.” Journal of the 
American Statistical Association 103, no. 484 (December): 1534–1544. 
https://doi.org/10.1198/016214508000000751. 

Pya, Natalya, and Simon N. Wood. 2015. “Shape Constrained Additive Models.” 
Statistics and Computing 25, no. 3 (May): 543–559. https://doi.org/10.1007/s11222-
013-9448-7. 

Ramsay, James O., Giles Hooker, and Spencer Graves. 2009. Functional Data Analysis 
with R and MATLAB. New York, NY: Springer. 

Reiss, Philip T., and R. Todd Ogden. 2009. “Smoothing Parameter Selection for a Class 
of Semiparametric Linear Models.” Journal of the Royal Statistical Society: Series 
B 54, no. 3: 507–554. https://doi.org/10.1111/j.1467-9868.2008.00695.x. 

Roecker, Ellen B. 1991. “Prediction Error and Its Estimation for Subset-Selected 
Models.” Technometrics 33, no. 4 (November): 459–468. 

Schoenberg, I. J. 1964. “Spline Functions and the Problem of Graduation.” Proceedings 
of the National Academy of Sciences 52, No. 4 (October): 947–950. 
https://doi.org/10.1073/pnas.52.4.947. 

Smith, Ralph C. 2014. Uncertainty Quantification. Philadelphia, PA: Society for 
Industrial and Applied Mathematics. 

Soong, T. T. 1973. Random Differential Equations in Science and Engineering. London, 
UK: Academic Press. 

Stark, Philip B., and Andrea Saltelli. 2018. “Cargo-Cult Statistics and Scientific Crisis.” 
Significance 15, no. 4 (July): 40–43. https://doi.org/10.1111/j.1740-
9713.2018.01174.x. 

Stengel, Robert F. 2004. Flight Dynamics. Princeton, NJ: Princeton University Press. 
Sugiura, Nariaki. 1978. “Further Analysis of the Data by Akaike’s Information Criterion 

and the Finite Corrections.” Communications in Statistics – Theory and Methods 7, 
no. 1: 13–26. https://doi.org/10.1080/03610927808827599. 

Tibshirani, Robert. 1996. “Regression, Shrinkage, and Selection Via the LASSO.” 
Journal of the Royal Statistical Society, Series B 58, no. 1: 267–288. 
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. 

Wahba, Grace. 1985. “A Comparison of GCV and GML for Choosing the Smoothing 
Parameter in the Generalized Spline Smoothing Problem.” The Annals of Statistics 
13, no. 4 (December): 1378–1402. 

White, Halbert. 1982. “Maximum Likelihood Estimation of Misspecified Models.” 
Econometrica 50, no. 1 (January): 1–25. https://doi.org/10.2307/1912526. 

Wojton, Heather, Kelly M. Avery, Laura J. Freeman, Samuel H. Parry, Gregory S. 
Whittier, Thomas H. Johnson, and Andrew C. Flack. 2019. Handbook on Statistical 
Design and Analysis Techniques for Modeling and Simulation Validation. 



 

R-4 

Alexandria, VA: Institute for Defense Analyses. https://testscience.org/wp-
content/uploads/sites/16/formidable/20/Handbook-on-Statistical-Design-Analysis-
Techniques-for-Modeling-Simulation-Validation-Reduced.pdf. 

Wojton, Heather, Kelly Avery, Han Yi, and Curtis Miller. 2021. Space-Filling Designs 
for Modeling and Simulation Validation. Alexandria, VA: Institute for Defense 
Analyses. https://testscience.org/wp-content/uploads/sites/16/ 
formidable/20/SFD_Literature_Review_Final.html. 

Wood, Simon N. 2006. “Low-Rank Scale-Invariant Tensor Product Smooths for 
Generalized Additive Mixed Models.” Biometrics 62, no. 4 (December): 1025–
1036. 

Wood, Simon N. 2008. “Fast Stable Direct Fitting and Smoothness Selection for 
Generalized Additive Models.” Journal of the Royal Statistical Society, Series B 70, 
no. 3 (July): 495–518. https://doi.org/10.1111/j.1467-9868.2007.00646.x. 

Wood, Simon N. 2017. Generalized Additive Models: An Introduction with R. 2nd ed. 
Boca Raton, FL: CRC Press. 

Yee, Thomas W. 2015. Vector Generalized Linear and Additive Models with an 
Implementation in R. New York, NY: Springer. 

Zhang, Xuezhou, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, and Rich Caruana. 
2019. “Axiomatic Interpretability for Multiclass Additive Models.” In KDD ’19: 
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 226–234. New York, NY: Association for Computing 
Machinery. https://doi.org/10.1145/3292500.3330898. 



REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER  

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER (Include area code)


	P-33230 Covers.pdf
	P-33230 Main Paper and Exec.pdf
	P-33230 SF 298_ FINAL.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


	1: 
	 REPORT DATE: 09/30/2022

	2: 
	 REPORT TYPE: [OED Draft]

	3: 
	 DATES COVERED: N/A

	4: 
	 TITLE AND SUBTITLE: Metamodeling Techniques for Verification and Validation of Modeling and Simulation Data

	5a: 
	 CONTRACT NUMBER: HQ0034-19-D-0001

	5b: 
	 GRANT NUMBER: 

	5c: 
	 PROGRAM ELEMENT NUMBER: 

	5d: 
	 PROJECT NUMBER: BD-9-2299(90)

	5e: 
	 TASK NUMBER: 229990

	5f: 
	 WORK  UNIT NUMBER: 

	6: 
	 AUTHOR(S): Curtis G. Miller
John T. Haman


	7: 
	 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): Institute for Defense Analyses
730 East Glebe Road
Alexandria, Virginia 22305

	Log #: [H 2022-000374]
	Report D or P: [P-33230]
	9: 
	  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES): Director, Operational Test and Evaluation
1700 Defense Pentagon
Washington, DC  20301

	10: 
	 SPONSOR/MONITOR'S ACRONYM(S): DOT&E

	11: 
	 SPONSOR/MONITOR'S REPORT NUMBER(S): 

	12: 
	  DISTRIBUTION/AVAILABILITY STATEMENT: This OED Draft has not been approved by the sponsor for distribution and release.  Reproduction or use of this material is not authorized without prior permission from the responsible IDA Division Director.



	13: 
	  SUPPLEMENTARY NOTES: Project Leader: John T. Haman

	14: 
	  ABSTRACT: Modeling and simulation (M&S) outputs help DOT&E assess the effectiveness, survivability, lethality, and suitability of systems. To use M&S outputs, DOT&E needs models and simulators to be verified and validated. The purpose of this paper is to improve the state of verification and validation by recommending and demonstrating a set of statistical techniques—metamodels, also called statistical emulators—to the M&S community. The paper expands on DOT&E’s guidance about metamodel usage by creating methodological recommendations the M&S community could apply to its activities. For a deterministic, discrete response variable, we recommend a nearest neighbor or decision tree model. For a deterministic, continuous response variable, we recommend Gaussian process interpolation. For a stochastic response variable, we recommend a generalized additive model. We also present techniques that testers can use to assess the adequacy of their metamodels and conclude with an example.

	15: 
	  SUBJECT TERMS: Gaussian Process Modeling; Generalized Additive Models; Modeling and Simulation (M&S) Validation; Paper Plane Simulation; Statistical Methods

	a: 
	  REPORT: Unclassified

	b: 
	 ABSTRACT: Unclassified

	c: 
	 THIS PAGE: Unclassified

	17: 
	  LIMITATION OF ABSTRACT: Unlimited

	19a: 
	  NAME OF RESPONSIBLE PERSON: John T. Haman

	18: 
	 NUMBER OF PAGES: TDB

	19b: 
	  TELEPHONE NUMBER (Include area code): 703-845-2132



