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ABSTRACT Space-filling designs are a common choice of experimental

design strategy for computer experiments. This article compares

space-filling design types based on their theoretical prediction variance

properties with respect to the Gaussian process model. An analytical sol-

ution for calculating the integrated prediction variance (IV) of the Gaussian

process model is given. Using the analytical calculation of IV as a response

variable, this article presents a study of the effects of dimension; sample size;

value of parameter vector, h; and experimental design type using a factorial

design and regression analysis.

KEYWORDS computer simulation, gaussian process models, integrated

variance, space-filling designs

INTRODUCTION

Computer simulation experiments are a potentially beneficial alternative

to physical experimentation for early stage product design and process

development activities and the study of transactional systems where

full-scale experiments are impractical. Unlike physical experiments, which

have been developed and studied for close to 80 years, computer experi-

ments are a relatively new application area.

Currently there are few references comparing experimental designs for

computer models. Allen et al. (2003) compared combinations of experi-

mental design classes with respect to second-order response surfaces and

kriging models. They pointed out that the utility of a given modeling

method was highly dependent on the choice of the experimental design.

Hussain et al. (2002) presented seven two-dimensional test functions that

they used to compare two surrogate models and two design types. They

concluded that the factorial design had better performance with respect to

the polynomial model and the Latin hypercube design (LHD) had better per-

formance with respect to the radial basis functions. Bursztyn and Steinberg

(2006) developed a new method of design comparison based on a Bayesian

interpretation of an alias matrix. They compared Latin hypercube designs,

uniform designs, lattice designs, rotation designs, and fractional factorial
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designs. They found that the alias sum of squares

criterion tended to favor the rotation designs.

Fractional factorial designs performed best in terms

of the entropy and minimum distance criteria,

whereas the integrated mean squared error (IMSE)

criterion favored space-filling designs. R. T. Johnson

et al. (2010) compared the prediction variance of

designs for fitting high-order polynomial models.

Their work demonstrated that the space-filling

designs perform poorly compared to optimal

designs. Of the space-filling designs, the sphere-

packing designs generally exhibited the best perfor-

mance in terms of prediction variance with respect

to polynomial models.

In this article we compare the maximin Latin

hypercube design (Mm LHD), sphere packing (SP)

design, uniform (U) design, maximum entropy

(ME) design, and the Gaussian process integrated

mean square error (GP IMSE or I-optimal) design

with respect to the prediction variance of the Gaus-

sian process (GP) model. We provide comparative

plots of predictive variance with respect to the GP

model as well as comparisons of the integrated

variance.

We start with a brief description of the GP model

used in this analysis and a motivating example. This

is followed by a section that describes classes of

experimental designs, and then we introduce our

comparison metrics and the graphical comparison

technique, followed by the results of our study. Fol-

lowing the results we present a sensitivity analysis for

the GP IMSE design with respect to the parameters of

the assumed model. Then we revisit the motivating

example and finally present our conclusions.

GAUSSIAN PROCESS MODEL

Computer simulation outputs can result in non-

linear response surfaces that traditional regression

methods cannot adequately model. The GP model

fitting technique can capture such complex behavior.

As a result, GP models are a standard for fitting deter-

ministic computer output. See Jones and Johnson

(2009), Bayarri et al. (2007), Linkletter et al. (2006),

Fang et al. (2006), Santner et al. (2003), Welch et al.

(1992), Currin et al. (1991), Sacks, Schiller, and

Welch (1989), and Sacks, Welch, et al. (1989) for

examples of the GP model and its application to

deterministic computer simulation outputs.

The GP model fits a response, y(x), using a

stochastic process; specifically, the multivariate nor-

mal distribution. The GP model is an attractive model

to use with a deterministic response because it acts

as an exact interpolator, but it can also be used with

a stochastic response. The output response is repre-

sented as an n � 1 data vector y(x), where y(x)

�N(m1n,r
2R(X, h))). R(X, h) is an n � n correlation

matrix that can be represented by one of a variety of

forms (see Sacks, Welch, et al. 1989). We use the

Gaussian correlation function below:

RijðX; hÞ ¼ exp �
Xd
k¼1

hkðxik � xjkÞ2
 !

where hk� 0 and d is the number of factors in the

experiment. If hk¼ 0, then the correlation is 1.0

across the range of the kth factor and the fitted sur-

face will be flat in that direction. Large hk corre-

sponds to low correlation in the kth factor and the

fitted surface will exhibit strong curvature in the

direction of the kth variable.

The fitted GP prediction equation is

ŷyðxÞ ¼ l̂lþ r0ðx;̂hÞR�1ðX;̂hÞðy� l̂l1nÞ

where the fitted mean and the hjs are represented by

l̂l and ĥh: These parameters are usually estimated via

maximum likelihood. In the fitted equation, r0ðx;̂hÞ
is an n � 1 vector of estimated correlations of the

unobserved y(x) at a new value of the explanatory

variables with the observations in the data, y(x):

riðx; hÞ ¼ exp �
Xd
k¼1

hkðxk � xikÞ2
( )

;

ŷyðxÞ interpolates the data. Using this model, the rela-

tive prediction variance is

Var ½ŷyðxÞ�
r2

¼ 1� r0ðx; hÞR�1ðX; hÞrðx; hÞ: ½1�

The variance of the predicted response at a new

point depends on the design, X, and the unknown

parameter vector, h. It also depends implicitly on

the sample size (number of rows in X) and the

number of design or experimental factors in the

simulation model d.
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As an example of a computer experiment,

consider the output from a computational fluid

dynamics (CFD) model of combustion in two input

variables, the x-axis and y-axis. This model is used

by the National Aeronautics and Space Administra-

tion (NASA). A graph of the response surface of

residual oxygen as a function of x-axis and y-axis

location is in Figure 1.

It is clear that simple models such as first- or

second-order polynomials would not provide an

adequate fit to this surface. The computer model in

this study ran quickly enough to allow for the simula-

tion of approximately 5,000 design points. The

development of the next CFD model for the larger

scale combustion experiment is expected to result

in a much more complex set of differential equa-

tions, and it may take hours to simulate a single

design point. Past applications using CFD have

shown that GP models perform well as surrogates

for the complex simulation code. Assuming that we

would fit the data using a GP model, we were inter-

ested in finding out what design is best and how

many design points are required to get acceptable

prediction performance. This example serves as

motivation to determine which design strategies

have the best predictive capabilities when the

expected form of the surrogate model is a GP model.

We assume that the true surface is either a GP model

or is closely approximated by this model. Though it

is unlikely that many deterministic simulation models

produce an output that is actually a GP model

(indeed, there are potentially a very large number

of nonlinear functions that may describe the output),

experience has shown that the GP model is an

excellent approximation in many situations.

Therefore, comparing different design strategies

under this assumption can provide useful insight to

experimenters.

SPACE-FILLING DESIGNS

Inherent differences between computer and

physical experiments have led to the development

of space-filling experimental designs for use solely

in deterministic computer simulations. Many space-

filling design alternatives have been proposed. In

our study we use the sphere-packing design, the

Latin hypercube design, the uniform design, the

maximum entropy design, and the GP IMSE design.

We chose these designs because of their popularity

in the literature and the ability to create them using

commercially available software. Table 1 provides

information about the paper(s) where the designs

are introduced, the goal or criterion of the design,

and paper(s) containing examples and applications

of the designs. Two dimensional plots of these five

space-filling designs can be found in Jones and John-

son (2009) and R. T. Johnson et al. (2010). Note that

the LHD used in this article is the maximin LHD,

meaning that it is a LHD with an added criterion that

the optimization used to create the design maximizes

the minimum distance between points with in the

constraints of the Latin hypercube. Also note that

another name for the sphere packing design is a

maximin design.

COMPARISON TECHNIQUE

Our purpose is to evaluate the prediction perfor-

mance of design strategies with respect to the GP

model. We use the integrated prediction variance

as the basis of comparison. Santner et al. (2003)

provided a general expression for the integrated

prediction variance, which for our situation

reduces to

IV ¼ trðR�1MÞ ½2�

where M and R are n�n matrices. Now the ele-

ments of M are

mij ¼
Z

rðxi;XÞrðxj ;XÞdx;

FIGURE 1 CFD response surface. (Color figure available

online.)
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which reduces to

mii

¼ c
Yd

k¼1
Uð2

ffiffiffiffiffi
hk

p
ð1�XikÞÞ �Uð2

ffiffiffiffiffi
hk

p
ð�1�XikÞÞ

h i

and

mij ¼ c
Yd

k¼1
exp

�
l� hk

2
ðXik

�XjkÞ2
�
Uð2

ffiffiffiffiffi
hk

p
ð1� x�ÞÞ

�Uð2
ffiffiffiffiffi
hk

p
ð�1� x�ÞÞ

�

where

c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðd lnðp=2Þ=

Yd

k¼1
hk

r

and

x� ¼ Xik þXjk

2

A computer program was written to evaluate Eq.

[2]. The results are provided in the following section.

DESIGN COMPARISON STUDY

In this section we compare the performance of

five space-filling designs and other factors with

respect to integrated prediction variance of the GP

model. The five space-filling designs used in the

comparison are the Mm LHD, SP, ME, U, and GP IMSE

(I-optimal). The integrated prediction variance (IV) of

computer experiments involving two, three, four, and

five factors was studied for each of the design types

across a range of sample sizes and values in the h
vector. Recall that for a GP model, the length of the

h vector is equal to the number of factors in the

model, thus equal to the dimension of the design.

For each case, two to five design factors, we set the

values of the sample size and hs using a factorial

design. We used a separate factorialdesign for each

of the two to five design factor scenarios. Each design

has the following factors:

n: sample size (three levels: (5d), 10d, (15d), where
d¼ 2, 3, 4, 5 and d ¼the number of factors in the
computer model being studied)

s: sum of h vector elements (three levels: 5, 10, 15)
R: ln ratio of values in h vector (two levels: 0, 1; Note:

there will be d� 1 ratios)
D: design type (five levels: Mm LHD, SP, ME, U, and GP

IMSE)

The values for the elements of h vector are

determined by s and R. The range of the ratio of hs
in the h vector is 1 and 10; thus, the log of the ratios

is 0 and 1. Each row in the resulting design matrix

requires the creation of a design with specified sam-

ple size, h vector, and design type. Note that the ME

design and the GP IMSE design require the

specification of the unknown hj parameters. In an

actual experiment, the hj are unknown in advance.

Therefore, we create ME and GP IMSE designs

TABLE 1 Description of Space-Filling Designs Used in this Article

Design Developed by: What the design does Applications=examples

Sphere packing M. E. Johnson et al. (1990) Maximizes the minimum distance

between pairs of design points

Jank and Shmueli (2007), Liefvendahl

and Stocki (2006), Chen et al. (2006),

Roux et al. (2006), Bursztyn and

Steinberg (2006)

Latin hypercube McKay et al. (1979) A permutation of points in each

column

Welch et al. (1992), Mease and Bingham

(2006), Tyre et al. (2007), Storlie and

Helton (2007)

Uniform Fang (1980) A set of design points uniformly

scattered in the design space

Wang and Fang (1981), Fang et al.

(2006), Bursztyn and Steinberg (2006)

Maximum entropy Shewry and Wynn (1987) Maximizes the amount of

information contained in the

distribution of a data set

Ko et al. (1995)

GP IMSE Sacks, Welch, et al. (1989) Minimizes the integrated mean

squared error of the GP model

Sacks, Schiller, and Welch (1989)
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by using equal scaling of the theta constants, where

the thetas are set equal to the mean value of the h
vector.

Our response variable, y, is the IV that is

calculated numerically from Eq. [2]. The design

matrix and results were analyzed by stepwise

regression using a full quadratic model as the initial

model to determine what effects have significant

impact on IV. The summary results for the two to five

factor cases are presented in Table 2. In this table we

have shown only the three most important factors

along with some regression model summary

statistics.

Table 2 shows that two of the main effects

(n¼ sample size and s¼ sum of the h vector ele-

ments) are important in all cases. In addition, three

of the two-factor interactions (n� s, n�D, and

s�D) were significant in each model, although their

effect magnitudes were much smaller than the main

effects. The R2 and adjusted R2 values (not reported)

were also all greater than 0.95.

Though three two-factor interactions were statisti-

cally significant in all models, in only one case—that

with two design factors—did any of these interac-

tions have a relatively important effect. Figure 2 pre-

sents the n� s (interaction plot for the two-factor

case. Note that when the sample size was at the

low level (5d¼ 10) the effect of s was relatively large,

so that as the magnitude of the hs increased there

was a large increase in the theoretical integrated

prediction variance. However, when sample size

was at the high level (15d¼ 30), s had very little

effect on the theoretical integrated prediction

variance.

Figure 3 presents the n�D interaction plot for the

two-variable case. This plot shows that if n is at the

high level the design type has very little effect on

the theoretical integrated prediction variance. When

the sample size is at the low level there is some

difference between designs with the I-optimal, Latin

hypercube, and uniform designs slightly outperform-

ing the maximum entropy and sphere-packing

designs.

Figures 4–7 illustrate the main effects profilers for

each of the regression models on the experiments for

the two-, three-, four-, and five-factor cases,

respectively.

The profilers provide the average IV (response

variable) values for chosen values of the main

effects. Figures 4–7 are set on the middle values for

each of the main effects N, R, and s. These figures

show that the GP IMSE (listed in the figures as I-

optimal), Mm LHD, and U designs all had similar

IV results and clearly outperformed the ME and SP

designs. The magnitude of the performance of the

designs as the number of factors increased is also

apparent. Notice that the IV for the I-optimal (GP

IMSE) design was approximately 0.098, 0.235,

0.423, and 0.477 for the two-, three-, four-, and

five-factor cases, respectively. For a fixed set of

values and ratios in the h vector and for a 10d sample

size, the IV increased nonlinearly.

Based on the response surface model for the IV

we observed the following:

1. For a fixed sample size (N), increasing the value

of any element of h increased the integrated vari-

ance IV for all design types.

2. Generally, increasing the number of runs reduced

the integrated variance for all design types given a

fixed h vector. However, in most cases there was

minimal benefit beyond N¼ 10d.

TABLE 2 Summary Results for Significant Effects in Two- to

Five-Factor Cases

Two factors Three factors Four factors Five factors

n n n n

t t t t

n 2 n 2 D D

RMSE¼ 0.029 RMSE¼ 0.039 RMSE¼ 0.05 RMSE¼ 0.047

Mean¼ 0.186 Mean¼ 0.343 Mean¼ 0.480 Mean¼ 0.563

FIGURE 2 n� s interaction plot. Y-axis is IV, x-axis is s, and the

two lines represent n at the low and high levels (10 and 30,

respectively). (Color figure available online.)
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3. Overall there was not much difference in perfor-

mance between the GP IMSE, LHD, and U design,

especially in cases where the sample size was at

the high level (15d).

4. The ME design performance greatly improved as

the sample size increased.

Sensitivity of the GP IMSE Design
to the Elements of h

In the previous section we demonstrated that the

GP IMSE design performed competitively with

respect to the IV criterion. Of course, this is not

FIGURE 3 n�D interaction plot. Y-axis is IV, x-axis is design type (D), and the two lines represent n at the low and high levels (10 and

30, respectively). (Color figure available online.)

FIGURE 4 Profile plot for the two-factor case. (Color figure available online.)

FIGURE 5 Profile plot for the three-factor case. (Color figure available online.)
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surprising because the GP IMSE design criterion

minimizes the integrated mean square error of a

design for a specified parameter vector, h, which is

a necessary input to the algorithm that generates

the design. In the experimental study described in

the previous section the parameters in the (vector

were always specified correctly for the GP IMSE

design. In general this will not be the case in a real

application. Therefore, it is of interest to explore

the effect of misspecification of the unknown para-

meters on the prediction properties of the design.

We attacked this problem with two different stu-

dies because the effect of incorrect specification is

different depending of whether all of the elements

of the h vector are the same or not. If all of the ele-

ments of the h vector are the same, then the GP IMSE

designs look qualitatively similar. Figure 8 shows

side-by-side views of three designs.

The left panel of Figure 8 shows the GP IMSE

design for two factors generated under the

assumption that both values of the h vector are equal

to one. For the middle panel both values are 5 and

for the right panel both values are 10. We see few

qualitative differences across the three panels; how-

ever, we note that as h increased, the design points

tended to pull in toward the middle design point value,

which in this case was zero. In addition, there was a

noticeable gap in the center of the region for the design

where both values of the h vector are equal to one.

Table 3 shows the resulting IV for the true value of

(given in the first column for the design generated

under the assumption that h is as given in the second

column. When the true value of h equals the speci-

fied value (i.e., for rows 1, 5, and 9) the IV is the

smallest for the given true value. The effect of the

changing s on the IV is overwhelmingly more

substantial than the effect of incorrect specification

of h in generating the design.

We now consider the effect of incorrect specification

of the h vector on two-factor GP IMSE designs where the

FIGURE 6 Profile plot for the four-factor case. (Color figure available online.)

FIGURE 7 Profile plot for the five-factor case. (Color figure available online.)
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ratio of the elements of the h vector varies from 2:1 to

10:1. We again generated three designs. We specified

the three h vectors for the designs as (2, 1), (5, 1), and

(10, 1). Figure 9 shows the resulting GP IMSE designs.

Here the variation in the look of the designs as

one scans from the left to the right panel of the plot

is more pronounced. Assuming that the h vector is (2,
1), there appear to be roughly four levels of X2 and

the distribution of X1 values is more uniform. For

ratios of 5 to 1 and 10 to 1, the plots both show

roughly three levels of X2 again and the levels of

X1 are more uniform.

In our choice of h vectors we are assuming that the

response surface has more curvature in the X1 direc-

tion. Suppose that we are wrong and that there is

actually more curvature in the X2 direction.

TABLE 3 Effects of Incorrect Specification Assuming the

Values of the h Vector are Equal

True value

of h
Specified

for design

Integrated

variance

1 1 0.000743

1 5 0.00107

1 10 0.0015

5 1 0.139

5 5 0.118

5 10 0.124

10 1 0.3901

10 5 0.347

10 10 0.345

FIGURE 9 GP IMSE designs varying the ratio of the elements of the h vector. (Color figure available online.)

TABLE 4 IV for Increasingly Incorrect Specification of the h

Vector

True

ratio

Ratio specified

for design

Integrated

variance

1:2 2:1 0.0125

1:2 5:1 0.0206

1:2 10:1 0.0247

1:5 2:1 0.0778

1:5 5:1 0.0996

1:5 10:1 0.1179

1:10 2:1 0.1965

1:10 5:1 0.2597

1:10 10:1 0.2787

FIGURE 8 Three different GP IMSE designs for two factors varying in the assumed equal values of the h vector. (Color figure available

online.)
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Table 4 shows the resulting IV for increasingly

incorrect specification of the h vector. As for Table 3,

the magnitude of the true h vector had the largest

effect on the IV. The effect of incorrect specification

is less pronounced.

CASE STUDY RESULTS

Recall the NASA-sponsored air breathing propul-

sion experiment described in the Gaussian Process

Model section. This section presents empirical

prediction variance results for this case study. The

simulation results are based on a CFD model built

to mimic the flow field parameters within an open

jet flame. Because the CFD is not available for com-

mercial use, we created a mathematical model that

predicts the CFD accurately to four decimal places.

The CFD is based on a physical experiment

described in R. T. Johnson et al. (2009). We are inter-

ested in modeling the response, oxygen, as a func-

tion of two input factors: x-axis and y-axis location.

The output response is fit using the GP model.

Because the theoretical IV study that we performed

indicated that the performance of both the Mm

LHD and the GP IMSE design were anticipated to

be very good in this case, we elected to use both

of these designs with n¼ 30 runs.

We evaluated the Mm LHD and the GP IMSE

design by comparing 5,000 points generated based

on the GP fit. For each point we computed the root

mean squared error (RMSE) from each model from

the equation

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5000
i¼1 yðxi � ŷyðxiÞÞ½ �2

5000

s
½3�

Table 5 summarizes the results showing the RMSE

for each design.

Here we see little difference in actual prediction

performance between the Mm LHD and the GP IMSE

design, with the Mm LHD slightly outperforming the

GP IMSE design. This is in general agreement

with the results of our analytical study of design

performance. More work comparing theoretical per-

formance with respect to the GP model prediction

variance and actual performance using both test

functions and actual computer models would be of

interest to practitioners.

CONCLUSIONS

This article compares theoretical prediction

performance of five space-filling designs with

respect to the theoretical integrated prediction vari-

ance (IV) of the GP model for experiments involving

two to five factors and a range of sample sizes and

magnitudes of the elements in the h vector. Based

on our study, we can draw several conclusions.

All of the designs that we studied (Mm LHD, SP, U,

ME, and GP IMSE or I-optimal) performed similarly

with respect to IV when the sample sizes (s) were at

least 10d (that is, 10 times the number of factors in

the experiment). Design performance did not change

dramatically between 10d and 15d, although we

would recommend 15d as a generally safe rule of

thumb for sample size. This is in general agreement

with results reported by other researchers (see, for

example, Loeppky et al. 2009). In general, as the com-

plexity of the response surface increased, sample size

requirements increased. This is an intuitive result.

What may not be as intuitive is that we found that

the design performance for IV (averaged across all

designs) depended on both the size of the elements

in the h vector and the sample size. That is, there was

a statistically significant interaction between these

two factors. When the sample size was small (5d),

IV performance deteriorated quickly as the average

size of the elements in the h vector increased. If

the sample size was as large as 15d the effect of

the h vector elements was much smaller. There was

some evidence that the SP and ME designs did not

perform as well as the other three space-filling

designs used in this study. The effect was not large

but was observed for all cases of number of factors

and size of the elements in the h vector.

The GP IMSE design performed as well as the Mn

LHD and U designs, but to construct these designs

the experimenter must assume values for the ele-

ments of the h vector. Consequently, we also evalu-

ated the performance of the GP IMSE design with

respect to how the elements of the h vector are speci-
fied in order to construct the design. We found that

TABLE 5 Root Mean Squared Prediction Error for Each Design

Over 5,000 CFD Simulation Runs

Mm LHD 0.0007

GP IMSE 0.0008

R. T. Silvestrini et al. 172



assuming that all elements of the h vector are equal

produces a GP IMSE design that performed well with

respect to IV when the actual elements of the h vec-

tor ere equal, even if the magnitude of the estimates

was incorrect. When the elements of the h vector

differed considerably from each other and we had

assumed that they were equal for design purposes,

there was some degradation in performance. The

worst case situations occurred when we assumed

that there was more nonlinearity in one direction

than in others and then found that the actual surface

was fairly smooth in that direction but very nonlinear

in others.

Finally, we reported the results of a two-factor

case study involving an air breathing propulsion

experiment. We fit the GP model to data from this

computer model using both the Mm LHD and the

GP IMSE design with 30 runs. We used these two

designs because they are good performers and were

anticipated to perform approximately the same

based on our theoretical IV study. We were able to

evaluate actual prediction variance performance by

using a set of 5,000 runs that had been conducted

but not used in model fitting. The RMSE of both

models was approximately the same, implying that

both designs performed similarly. This was only a

single confirmation study and we encourage other

researchers to conduct additional studies to evaluate

our conclusions.
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