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ABSTRACT
One of the most powerful features of Bayesian analyses is the ability to combine multiple sources
of information in a principled way to perform inference. This feature can be particularly valuable in
assessing the reliability of systems where testing is limited. At their most basic, Bayesian methods for
reliability develop informative prior distributions using expert judgment or similar systems. Appropri-
ate models allow the incorporation of many other sources of information, including historical data,
information from similar systems, and computer models. We introduce the Bayesian approach to reli-
ability using several examples and point to open problems and areas for future work.

Background

This is an interesting time for statistical reliability.
On one hand, shrinking budgets in areas like defense
acquisition lead for calls to “do more with less” and
“use all available data” (NRC 1998, 2004, 2006, 2015).
On the other hand, we are also in the era of “big data,”
where information from sensors, warranty claims, and
field data can be used to supplement traditional reliabil-
ity testing (Meeker and Hong 2014). What these chal-
lenges have in common are the need to combine multi-
ple sources of information from different sources, (e.g.,
life tests, physics-based knowledge, expert opinion,
computer experiments) using models that acknowl-
edge the differences in the variation and uncertainty
among the sources (Anderson-Cook 2009; Reese et al.
2004). Bayesian statistical approaches can provide a
natural and principled way to combine the informa-
tion.

At their core, Bayesian methods start with Bayes’
Theorem,

π(θ | y) = f (y | θ )π(θ )

f (y)
. [1]
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The left-hand side of the equation is the posterior distri-
bution, which summarizes the current state of knowl-
edge about the parameters in a statistical model, given
the observed data. The first term on the right-hand
side of the equation is f (y | θ ), which is the likeli-
hood (the distribution for the data thought of as a
function of θ). The second term, π(θ ), is the prior
distribution for θ , which captures our state of knowl-
edge about the parameters before observing the current
data. The denominator, f (y) = ∫

f (y | θ )π(θ )dθ , is
themarginal distribution for the data.We frequently do
not compute f (y) explicitly, since we know the poste-
rior distribution is a probability density that integrates
to 1.A goodway to rememberBayes’ Theorem: the pos-
terior is proportional to the likelihood times the prior.

Bayesian methods for reliability start from Eq. [1].
When we refer to a Bayesianmodel, we mean the speci-
fication of both the likelihood and the prior distribu-
tion. As with non-Bayesian approaches, much atten-
tion is paid to specifying the likelihood. While there is
considerable overlap in the likelihoods considered in
Bayesian and non-Bayesian reliability methods, hierar-
chical models and models for multi-level system relia-
bility are more commonly discussed in a Bayesian con-
text and are described here in some detail.
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The prior distribution is a key component for
Bayesian methods. There are two necessary features
when using a prior distribution: (1) there is previous
information relevant to the analysis and (2) this infor-
mation can be summarized as a probability distribu-
tion on parameters that are useful in the current anal-
ysis. However, the situation where the analyst wants
to summarize “no prior knowledge” can also be cap-
tured. Establishing a prior distribution clearly requires
careful thought and modeling, but has the opportunity
to supplement the data in the current experiment and
the potential to provide improvements in the precision
of estimates. As with all statistical modeling, the final
results of an analysis using a prior distribution must
be carefully examined to determine the sensitivity and
impact of assumptions and modeling choices (Gelman
et al. 2013; Reese et al. 2001).

Bayesian methods can also provide computational
simplifications when fitting complex models. Specif-
ically, in reliability problems, censored data can be
incorporated in a very straightforward way. In addi-
tion, when framed as a Bayesian problem, complex
models can often be relatively easily fit using Markov
chainMonte Carlo. In addition, Bayesianmethods eas-
ily allow the computation of distributions (to include
point and interval estimates) for complicated functions
of model parameters (e.g., predictions, probability of
failure, quantiles of lifetime distribution), which can
support additional modeling to combine information.

Basics

Binomial example

Systems developed and deployed by the Department
of Defense (DoD) undergo a variety of test events that
help understand reliability (NRC 1998). The company
building the systemuses “design for reliablity” practices
(Rhoads 2011) and contractor testing to make an ini-
tial assessment of reliability. The government performs
developmental testing, which focuses on requirements
checking, and operational testing, which considers the
system in realistic settings and environments (Dickin-
son et al. 2015). During a system’s lifecycle, there may
be several variants that result from repairs, upgrades,
or life extension programs. Ideally, we would like to
design a full suite of tests for each variant of the sys-
tem under all operational conditions. In practice, this
is seldom possible, due to a variety of constraints (e.g.,

cost, time, treaty restrictions). Consequently, the prob-
lem of interest is how we use all of the information we
have collected to understand the current reliability of
the stockpile of systems.

As an example, consider the Small Bomb (SB), which
is a multipurpose bomb that consists of seven subsys-
tems with multiple components that are tested with 14
end-to-end tests.1 The response of interest is treated
as pass/fail, successful detonation or not. Suppose that
of n = 14 tests, SB failed to detonate twice. The test
data are modeled with the likelihood function, f (y |
R). This likelihood function is the same starting point
that would be used for a non-Bayesian reliability anal-
ysis. The binary test data of bomb detonations follow
a binomial distribution with probability of a pass of R.
That is,

f (y | R) ∝ Rs(1 − R)n−s ,

where y is the number of successful tests, s, and the
number of failed tests, n − s.

The prior distribution of SB reliability, π(R), is con-
structed from previous data or expert knowledge. The
prior reliabilities are captured in the form of a distri-
bution that is determined before the data are obtained.
Suppose that SB was previously tested and failed 3 out
of 17 tests. Depending on how operationally realistic
the previous testing was, we may choose to include
none or all of the prior information into our prior
assessment of reliability,π(R). One approach to includ-
ing this information is through a beta distribution

π(R) ∝ Rnpp(1 − R)np(1−p) ,

with p as the prior reliability estimate and np ≥ 0 as the
weighting factor of that prior estimate (Johnson et al.
2003). When np is set to 0, we do not believe that the
prior data are relevant to the current test data and the
prior distribution gives equal probability to all values
between 0 and 1 (see the middle panel of Figure 1). As
np increases, our confidence in the prior reliability esti-
mate increases, and the distribution peaks around this
estimate (see the left panel of Figure 1).

The posterior distribution is proportional to the
product of the likelihood function and the prior distri-
bution. The choice of the beta distribution as a prior
is useful for several reasons: it is flexible enough to
describe a variety of prior beliefs, it ensures that R is
between (0, 1), and it is the conjugate prior for the

 Data are notional.
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Figure . Prior (dashed lines), likelihood (solid [blue] line), and posterior (dot-dash lines) distributions for the SB reliability analysis with
different prior settings in each panel.

binomial distribution. Conjugate priors have the prop-
erty that the form of the prior distribution, when com-
bined with the likelihood, is the same as the posterior
distribution.2 Multiplying the likelihood and prior for
SB and rearranging, we have

π(R | y) ∝ Rs(1 − R)n−sRnpp(1 − R)np(1−p)

∝ Rs+npp(1 − R)n−s+np(1−p)

∼ Beta(s+npp+ 1, n − s + np(1 − p)+1).

The choice of np and p will impact posterior infer-
ence for SB reliability, as well as any functions thereof.
If we use a non-informative or diffuse prior (here, np =
0; see middle panel of Figure 1), the analysis gives a
mean of 0.81 and 95% credible interval of (0.60, 0.96).
Contrast this with the non-Bayesian maximum like-
lihood estimate of 0.86 and 95% confidence inter-
val of (0.57, 0.98), with slightly wider intervals and a
higher point estimate. Uncertainty is decreased when
our prior assessment matches what the data say (left
panel of Figure 1). The prior data were collected in a
semi-operationally realistic manner, and therefore we
set np = 7, resulting in a reliability estimate of 0.85
and 95% interval of (0.67, 0.96). The right panel of
Figure 1 shows a prior assessment of reliability that is
rather poor (failing 9 out of 17 tests) but the testing
was only partially relevant to the current test and is
downweighted (np = 3). These settings result in a SB
reliability estimate of 0.78 and a 95% credible interval
of (0.57, 0.94).

 Conjugate priors exist formany distributions. SeeHamada et al. () or Gel-
man et al. () for more information.

In this case, we have chosen a specific np; however,
using more complex models, the weight can be chosen
based on the observed data (Reese et al. 2004; Ibrahim
and Chen 2000; Anderson-Cook et al. 2007).

A good statistical analysis should include some
check of the adequacy of themodel fit to the data. Sensi-
tivity analysis investigates howmuch inference changes
when other reasonable priors or models are assumed
instead of the one in use. In the case of SB, the resulting
posteriors do not change drastically under each prior
assessment. Depending on the purpose of the analysis,
posterior predictive checking can help determine the
adequacy of model fit and how the model is impacted
by changing the prior.

Lifetime example

Now suppose that we consider the data in Table 1.
These data are the viscosity breakdown times (in 1000s
of hours) for 50 samples of a lubricating fluid. Unlike
the data in the previous example, these data are contin-
uous and an example of lifetime data.

There are a variety of distributions that are com-
monly used when analyzing lifetime data, which

Table . Viscosity breakdown times (in s of hours) for  sam-
ples of a lubricating fluid (from Hamada et al. ).

. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
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include the exponential, gamma, Weibull, and lognor-
mal. These distributions capture a variety of different
features, including different hazard functions. We can
think of the hazard function as an items propensity to
fail in the next short interval of time, given that the
item has survived to time t, and we define it as

h(t ) = f (t )
1 − F(t )

= f (t )
R(t )

.

An exponential distribution has constant hazard, while
a Weibull distribution can have constant, increasing,
or decreasing hazard, depending on the choice of
parameters.

One way to choose the appropriate sampling distri-
bution for our data is to consider a sequence of proba-
bility plots for each different distribution; this suggests
the lognormal as appropriate for our data. The lognor-
mal has probability density function

f (x | μ, σ 2) = 1
x
√
2πσ 2

exp
[
− 1
2σ 2 (log(x) − μ)2

]
,

x > 0, −∞ < μ < ∞, σ > 0

with

E(X ) = exp
(

μ + σ 2

2

)

Var(X ) = exp(2μ + 2σ 2) − exp(2μ + σ 2)

h(t | μ, σ ) =
φ

(
log(t )−μ

σ

)

σ t − σ tΦ
(
log(t )−μ

σ

) ,

where φ(·) is the probability density function of the
standard normal distribution and Φ(·) is the cumula-
tive distribution function of the standard normal dis-
tribution. If a random variable X is log-normally dis-
tributed, then Y = log(X ) has a normal distribution.
The lognormal distribution has two parameters,μ and
σ 2, which correspond to the mean and variance of the
distribution of log(X ). If σ 2 is known, then the normal
distribution is the conjugate prior for μ; if μ is known,
then the inverse gamma distribution is the conjugate
prior for σ 2.

Suppose that we specify that μ ∼ Normal(2, 1)
and independently σ 2 ∼ InverseGamma(6, 5). A use-
ful tool to assess the choice of prior distribution for the
parameters is the prior predictive distribution

p(y) =
∫

f (y | μ, σ 2)π(μ, σ 2)dμdσ 2.

This distribution, shown in the left panel of Figure 2,
reflects what we would expect for a randomly selected
fluid breakdown time in the presence of all a priori
uncertainty. Instead of performing the integration, we
draw10,000 observations from the prior, used each pair
to draw an observation from a lognormal distribution,
and draw a boxplot of the results.

The prior distribution for this problem is not conju-
gate. However, the posterior distribution is still deter-
mined using Bayes’ Theorem (Eq. [1]). For this prob-
lem,

π(μ, σ 2 | y)
∝ 1√

2π
exp

(
−1
2
(μ − 2)2

)

Figure . Prior (left) and posterior (right) predictive distributions for viscosity data with lognormal likelihood and prior distributions of
μ ∼ Normal(2, 1) and σ 2 ∼ InverseGamma(6, 5).
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Figure . (Left) Contour plot of prior distributionwith posterior distribution overlaid; (right) zoomed in on the contour plot of the posterior
distribution.

× 56

�(6)
(σ 2)−7 exp

(
− 5

σ 2

)

×
∏ 1

yiσ
√
2π

exp
(

− 1
2σ 2 (log(yi) − μ)2

)

∝ 1
σ 64 exp

(
−1
2
(μ − 2)2 − 5

σ 2

)

× exp
(

−
∑ (log(yi) − μ)2

2σ 2

)
.

Figure 3 shows a contour plot of the prior distribution
with the posterior overlaid in red (left) and a zoomed
in contour plot of the posterior (right).

Inmuch the sameway as we calculated the prior pre-
dictive distribution,we can compute a posterior predic-
tive distribution

p(x) =
∫

f (x | μ, σ 2)π(μ, σ 2 | y)dμdσ 2.

To avoid computing the integral, we use 10,000
samples from the posterior distribution, use each
sampled pair to draw an observation from a
LogNormal(μ(i), (σ 2)(i)) distribution, and draw a
boxplot of the results (right panel, Figure 2). The
general technique to draw samples from the posterior
distribution is Markov chain Monte Carlo, which is
briefly described later.

The posterior predictive distribution shows what
we expect to see if we draw another observation. It
integrates over our current a posteriori uncertainty
about the model parameters. We can extend this idea
to domodel checking and see if ourmodel is consistent
with the data. The idea is that if our model fits, then
replicated data generated under the model should look
similar to observed data (Gelman et al. 2013). More

specifically, the observed data should look plausible
under the posterior predictive distribution.

The basic technique is to draw simulated values of
replicated data from the posterior predictive distribu-
tion and compare some summary of these samples
to the same summary of the observed data. Any sys-
tematic differences between the simulations and the
data indicate potential failings of the model. In our
example, we use our posterior draws, draw a replicate
data set of size 50 from a LogNormal(μ(i), (σ 2)(i)) dis-
tribution, compute a summary statistic, draw a his-
togram, and compare to the observed data. In Figure 4
we show two summary statistics: the deviance (−2 ∗
log(likelihood)), which is a general measure of good-
ness of fit, and the 75th percentile of the data. There is
no evidence of a discrepancy between the model and
the observed data for these two features.

Censored data could be easily incorporated into the
computation of the posterior distribution using the
expressions in Table 2 in the likelihood. In Eq. [2], all
of the data was uncensored, so that each observation
made a contribution of f (t ) to the likelihood.

More details

Prior distributions

Many people are uncomfortable with the Bayesian
approach, often because they view the selection of
a prior as being arbitrary and subjective. The prior
distribution should capture the information known
about the component or system of interest and be
defensible. Careful thought should always be put into
the prior distribution, as naively specified priors can
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Figure . Histograms created from replicate data sets of size  drawn using posterior samples of (μ, σ 2). (Left) Computed deviance from
replicate data sets, with observed data deviance (vertical gray [red] line). (Right) Computer th percentile from replicate data sets, with
observed data th percentile (vertical gray [red] line).

lead to misleading results. Building a prior begins with
the properties of the parameter of interest: if a param-
eter needs to be positive, choose a distribution that is
also positive. From there, prior construction can be
broadly grouped into the specification of informative
and non-informative distributions.

The non-informative prior is also commonly
referred to as a flat, diffuse, vague, or objective prior.
In general, a non-informative prior tries to capture
the idea of minimal knowledge about the parameter.
These priors include only basic information about
parameters, like the reliability has a uniform chance
of being any value between 0 and 1. See Berger (2006)
and Ghosh (2011) for discussion and examples. Note
that Jeffrey’s priors are priors that are invariant under
reparametrization of the parameters. While they are
considered objective, these priors are not always proper
(i.e., they do not integrate to 1) and may not perform
satisfactorily in some cases (Box and Tiao 1973; Datta
and Ghosh 1996).

Informative priors can be based on subject matter
expert and subjective assessments (see Von Winter-
feldt and Edwards 1986; Morgan and Henrion 1991; U.
S. Nuclear Regulatory Commission 1994; Meyer and
Booker 2001; Garthwaite et al. 2005; Bedford et al.

Table . Likelihood contributions for censored data.

Type of Observation Failure Time Contribution

Uncensored T = t f (t )
Left censored T ≤ tL F(tL)
Interval censored tL < T ≤ tR F(tR) − F(tL)
Right censored T > tR 1 − F(tR)

2006; Goldstein 2006; O’Hagan et al. 2006), or previ-
ous test data (e.g., Johnson et al. 2005; Dickinson et al.
2015). Some general notes on developing priors: ensure
that the prior information is relevant to the current
reliability evaluation. Allow for the analysis to change
freely based on the data observed. Be mindful that any
value of reliability with zero probability in the prior
has zero probability in the posterior, regardless of the
amount of data observed. It is always prudent to check
impact of the prior assumptions: explore the prior pre-
dictive distributions and re-check the analysis with a
sensitivity study. A good model should be fairly robust
to prior specifications.

Hierarchical models

Situations arise in reliability assessments where multi-
ple parameters are thought to be similar but not iden-
tical. Consider the failure rate for a family of vehicles.
Here, knowing that the vehicles are built on the same
chassis or have common parts means data about fail-
ure rates from one vehicle variant also provides infor-
mation about the failure rate of the other variants. In
Dickinson et al. (2015), the authors use a hierarchical
model for the Stryker family of vehicles and leverage
information across vehicle variant and test phase. Hier-
archical models are widely applicable and can provide
insight into complex applications.

Suppose that a new torpedo is fit with wings and
can be dropped from either a helicopter or a low fly-
ing airplane. We are interested in the miss distance of
the torpedo (i.e., the distance from the aim point to
the actual splash point in the water). Testing occurred
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Figure . Three-component series system.

on two helicopter variants and three types of airplanes.
Due to the placement of the launchers on the various
aircraft, the accuracy of the torpedo is expected to be
similar but not identical depending on which launcher
is used. The likelihood function for the resulting data,
y, is Normal, with mean μ and variance σ 2. The vari-
ability is determined to be constant across variant, but
each launcher will have a distinct mean. The prior for
the means will also be Normal with mean θ and vari-
ance τ 2 (see the model specification in 2):

yi j | μi, σ
2 ∼ N(μi, σ

2)

μi | θ, τ 2 ∼ N(θ, τ 2). [2]

Here, i indicates the launcher types (i = 1, . . . , 5) and
j denotes the tests for a given launcher type ( j =
1, . . . , ni). The hierarchical model leverages informa-
tion from all launcher types while still allowing for dis-
tinct mean values.

System reliability

In the discussion so far, we havemodeled systemswith-
out considering their constituent components. How-
ever, Bayesian methods are readily applicable to assess-
ing the reliability of systems. Consider the fault tree in
Figure 5, which is a series systemwhere the system fails
if any component fails. Suppose we have the data given
in Table 3, which shows independent pass/fail data for
each component and for the system as a whole.

Table . Data for three-component series system with system
data.

Successes Failures Units Tested

Component    
Component    
Component    
System   

Let Ri be the reliability for component i, i = 1, 2, 3.
As in the binomial example, the likelihood for each
component can be written as

L(yi | Ri) ∝ Rs
i (1 − Ri)

ni−s ,

or more concretely for this problem, we can write the
likelihood for the first three rows of component data
as

f (y1, y2, y3 | R1,R2,R3)

∝ R8
1(1 − R1)

2R7
2(1 − R2)

2R3
3(1 − R3).

To complete the specification of the likelihood, we also
need to include the system data. For a series system, we
know that the system reliability is equal to the product
of the component reliabilities:RS = R1R2R3. To include
the system data, we have

f (y | R1,R2,R3)

∝ R8
1(1−R1)

2R7
2(1−R2)

2R3
3(1 − R3)R10

S (1−RS)
2

∝ R8
1(1 − R1)

2R7
2(1 − R2)

2R3
3(1 − R3)(R1R2R3)

10

×(1 − R1R2R3)
2.

To complete the Bayesian analysis, we now specify
a prior distribution on our three unknown compo-
nent reliabilities. This specification must be done with
considerable care. For example, Figure 6 shows the
induced prior distributionwhen a uniformdistribution
is assumed for the three component reliabilities. Note
that the prior is somewhat pessimistic about the prior
distribution of system reliability, and this pessimism
is only compounded as the number of components
increases (Parker 1972). As multi-level models with
data for systems and components become more com-
plicated, the specification of prior distributions also
become increasingly difficult (see, for example, Allella
et al. 2005; Zoh 2012; Guo andWilson 2013). Develop-
ing robust prior distributions for systems is an ongoing
area of research.

Estimating reliability when no failures have been
observed does not create complications for the
Bayesian approach: one simply specifies a prior distri-
bution and uses the likelihood from the observed data
to get to a posterior distribution. Even for a case where
there is no observed data, the Bayesian approach has
a reasonable solution. For a single component with no
data, the posterior is the same as the prior.
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Figure . Induced prior distribution on three-component series system reliability with uniform prior distributions on each component
reliability. The histogram comes from simulation and the solid line is actual prior density function.

The methods that we describe here have been
extended in a variety of ways. For example, Anderson-
Cook et al. (2008) considers how to incorporate multi-
ple diagnostics measured at the components; Guo and
Wilson (2013) describes models for binary, lifetime,
degradation, and expert opinion at the component and
system level; Wilson et al. (2007) describes the devel-
opment of complex system representations;Wilson and
Huzurbazar (2007) generalize the system structures to
Bayesian networks; Anderson-Cook (2008) and Zhang
and Wilson (2016) describe model checking for incor-
rect system structure or dependent data.

Implementation

Many proposed Bayesian models are analytically
intractable, i.e., conjugate prior distributions do not
exist or do not fit physical or theoretical constraints.
Unless you are working with only a few parameters,
the posterior distribution is obtained by way ofMarkov
chainMonteCarlo (MCMC)methods (Gamerman and
Lopes 2006; Albert 2009). MCMC algorithms can be
thought of as general-purpose methods to obtain sam-
ples from an arbitrary distribution—in the case of a
Bayesian model, the posterior distribution. The pos-
terior samples can be used to provide posterior esti-
mates of the parameters of interest, as well as poste-
rior credible intervals. Posterior samples can also be

transformed to give point and interval estimates of any
function of the parameters, like the hazard or survival
function from a given reliability model or a combina-
tion of component reliabilities to estimate the full sys-
tem reliability. For further details, see Hamada et al.
(2008), Robert and Casella (2010), and Gelman et al.
(2013).

Note there are many software packages that imple-
ment Bayesian models, including OpenBUGS, JAGS,
SAS/PROC MCMC, and R packages (mcmc, arm,
bayesSurv, rstan), and many more.3

Areas for further research

Combining data across tests

One of the ongoing challenges for combining informa-
tion in reliability is how to use information from mul-
tiple tests. Over time, the system changes (e.g., through
repair or redesign) and the test environments change
(e.g., developmental to operational testing). There are
typically not enough resources to fully test each variant
of the system during each test event, so the challenge
that arises is how to combine information from the test
events to characterize the system and its reliability in
multiple environments. Anderson-Cook (2009, p. 241)

 For more tools and resources, see https://cran.r-project.org/
web/views/Bayesian.html.

https://cran.r-project.org/web/views/Bayesian.html
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highlights the potential advantage of solving this prob-
lem, “If we have multiple small data sets that are each
individually insufficient to answer the question of inter-
est, then combining them and incorporating engineer-
ing or scientific understanding of the process should
allow us to extract more from that collection of data
compared to just looking at the pieces alone.”

When combining information, there is no omnibus
solution. At its simplest, the problem of combining
information across tests involves identifying parame-
ters (or functions of parameters) that appear in mod-
els for multiple tests. This implies that data from mul-
tiple tests provides information to estimate the param-
eters. However, the models need to be carefully con-
sidered and evaluated to ensure that they accurately
reflect the data and the underlying physical processes.
The models have to be simple enough that they can be
distinguished by the data, but at the same time complex
enough to capture the physical processes. One poten-
tially promising approach is to consider a hybrid of
reliability growth models (National Research Council
Panel on Reliability Growth Methods for Defense Sys-
tems 2015), that capture the arc of the test process, with
models that capture, either empirically or physically,
details of the individual systems.

Assurance testing

In an era of high reliability requirements and limited
resources, leveraging previous test data to plan the next
test is essential. Here the objective is to demonstrate
that at a desired level of confidence, the system will
meet or exceed a specified requirement. Bayesian assur-
ance tests are used to insure that the reliability of an
item meets or exceeds a specified requirement with a
desired probability. Although practitioners often use
“assure” and “demonstrate” synonymously, Meeker and
Escobar (2004) distinguish between reliability demon-
stration and reliability assurance testing. A reliability
demonstration test is essentially a classical hypothe-
sis test, which uses only the data from the current
test to assess whether the reliability-related quantity of
interest meets or exceeds the requirement. A reliability
assurance test, however, uses supplementary data and
information to reduce the required amount of testing.

Consider SB as an example. Given previous test
data on each subsystem (if available) and the 14 end-
to-end tests, assurance testing ideas can be used to
plan the next test phase. We want to determine (n, c)
where n is the test sample size and c is the number of

systems allowed to fail before the “test is failed.” There
are two errors we couldmake, either we decide the “test
is failed” when SB reliability R is higher than a specified
πP or decide the “test is passed” when SB reliability is
lower than a specified πC. These errors are the poste-
rior producer’s risk (choose a test plan so that if the test
is failed, there is a small probability that the reliabil-
ity at tI (the time of interest) is high) and the posterior
consumer’s risk (choose a test plan so that if the test is
passed, there is a small probability that the reliability at
tI is low).

The posterior producer’s risk is shown mathemati-
cally below. Looking at line (3), this is the probability
that R ≥ πP (the integrand) given everything known
about R (i.e., p(R | x) from the binomial example) and
that we observe more than c failures (in brackets).

Posterior Producer′s Risk

= P(R ≥ πP | Test Is Failed, x)

=
∫ 1

πP

p(R | y > c, x)dR

=
∫ 1

πP

f (y > c | R)p(R | x)∫ 1
0 f (y > c | R)p(R | x)dR

dR

=
∫ 1
πP

[∑n
y=c+1(

n
y )(1 − R)yRn−y

]
p(R | x)dR

∫ 1
0

[∑n
y=c+1(

n
y )(1 − R)yRn−y

]
p(R | x)dR

=
∫ 1
πP

[
1 − ∑c

y=0(
n
y )(1 − R)yRn−y

]
p(R | x)dR

1 − ∫ 1
0

[∑c
y=0(

n
y )(1 − R)yRn−y

]
p(R | x)dR

[3]

The posterior consumer’s risk is shown mathemati-
cally below. Looking at line (4), this is the probability
that R ≤ πC (the integrand) given everything known
about R (i.e., p(R | x) from the binomial example) and
that we observe no more than c failures (in brackets).

Posterior Consumer′s Risk
= P(R ≤ πC | Test Is Passed, x)

=
∫ πC

0
p(R | y ≤ c, x)dR

=
∫ πC

0

f (y ≤ c | R)p(R | x)∫ 1
0 f (y ≤ c | R)p(R | x)dR

dR

=
∫ πC
0

[∑c
y=0(

n
y )(1 − R)yRn−y

]
p(R | x)dR

∫ 1
0

[∑c
y=0(

n
y )(1 − R)yRn−y

]
p(R | x)dR.

[4]



128 A. G. WILSON AND K. M. FRONCZYK

With the posterior producer and consumer risks
defined, the number of SB tests and allowable failures
are chosen such that both risks are below a thresh-
old. For more details and examples, see Hamada et al.
(2008) or Hamada et al. (2014).

Frequently, test planning for a group of related sys-
tems requires assurance testing ideas. For instance, a
family of vehicles may go through multiple phases of
test but the next test will only have three of five vari-
ants available. To obtain a reliability assessment of the
family, information must be leveraged across both test
phase and variants. There may also be other covari-
ates, such as test site or two-seat and four-seat con-
figurations. These extensions to the assurance testing
methodology are areas of future research.

Conclusion

Bayesianmethods provide a principled way to combine
information for reliability. They allow inferences and
uncertainty quantification for complex models and are
relatively easy to implement with the ever-increasing
choices for software. While we have illustrated these
methods using DoD systems, Bayesian approaches are
applicable to a wide variety of problems.

Methods for combining data require detailed
thought and analysis at every step of the process. Care
must be taken to identify relevant information for
prior development, specify the likelihood, understand
the model structure (e.g., for a system or a hierarchical
specification), check the sensitivity to assumptions,
and examine model fit. This is good statistical practice
for any analysis involving complex models.
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