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Motivation and Rationale
Is Big data always better?  

What did you give up for the knowledge you gained?

• Why converge the model of Subsystem A to +/- 0.1% error when +/- 5% 
would have sufficed?
• What if Subsystem B needed more resources [people, cluster time, 

tunnel time] that could have been a better allocation of resources?
• So track both model convergence and the top down requirements of 

the project.

• Why predefine your design space sampling scheme before collecting any 
data?
• What if Subsystem C dedicated a significant number of samples that 

did not contribute significantly to the variability of the model?
• So understand the error properties of the model and how to use that 

information to choose the next best set of points to sample.

State-of-the-art R&D doesn’t go as planned…so at least be responsive 
as you collect your data.
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Adaptive Sampling Benefits

How does adaptive sampling buy its way onto a project?

• Better team communication
• Having more frequent conversations about how a dataset is evolving 

avoids a “throw it over the fence” mentality.

• Improved metamodel confidence
• Treat your metamodel similarly to CFD, and check to see if it is 

asymptotically converging.

• Catch issues earlier on
• Unusual or unexpected behavior, if nonphysical, can be corrected for 

future data samples.

• Better allocation of resources
• Stop collecting subsystem data when it no longer improves the 

fidelity of overall system predictions.
• Improve the efficiency of very high intensity tasks, such as UQ.
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Application: High Speed Air Breathing Propulsion

Turbojet: Mach 0 à 2-3

Ramjet: Mach 2 à 5
DMRJ: Mach 4 à 8
Scramjet: Mach 8+
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Low to Moderate 
Airframe 
Integration

High Airframe 
Integration

Two examples of applying the adaptive sampling methodology in remainder of presentation 

Predicting the performance of integrated scramjet and DMRJ systems 
requires efficient data collection, metamodeling, and UQ because:
1. Point (numerical or experimental) simulations are expensive due to 

high enthalpy facilities or need for highly resolved, reacting CFD.
2. As airbreathing systems scale, they quickly outpace the size of existing 

ground test facilities, requiring predictive flight CFD to be validated 
against representative component ground testing.

Our present regime of interest



Example 1: Uninstalled Air-Specific Impulse
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As a model problem, the maximum uninstalled air-specific impulse 
performance of a hydrogen-fueled supersonic combustion propulsion cycle 
was evaluated over a Mach number range of 6 à 12 and an inlet kinetic 
energy efficiency range of 0.93 à 0.97.  All other cycle parameters were 
held to fixed values.

This is a challenging design space to model because it is ridged due to not 
being able to use a stoichiometric fuel-to-air ratio everywhere. 



Adaptive Sampling Methodology

The adaptive sampling methodology 
assumes that a metamodel is used in 
tandem with the data collection.

1. Construct metamodel using the 
existing collected data.

2. Use the model variance to search for 
the next best point(s) to sample.  For 
multiple samples at once, rank 
variance optima in descending order.

3. Perform data collection at the 
selected points in the design space.

4. Refit the metamodel and compute 
the RMSE to assess metamodel 
convergence.

5. Repeat steps 2 à 4 until 
convergence or end of budget/time. 
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The following analyses use a Gaussian Process (Kriging) metamodel form to model the raw data
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Uninstalled Fn/Wa Metamodel Evolution

Metamodel begins to take shape 
after 21 samples and converge 
after 71 samples.

Heavy data collection along the 
max and min etaKE boundaries.
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length. However, a multitude of uncertainty sources exist that affect the ability of the simulation to replicate
the measured isolator flowfield. As a result, the validation exercise should be performed in the presence of
these uncertainty sources prior to making any definitive claims on the adequacy of the turbulence model for
the chosen application.

Figure 8: Comparison of measured wall pressure with computed results (medium grid): top and bottom
walls (left), side walls (right).

As mentioned previously, the first step in the uncertainty quantification process is the determination and
characterization of the uncertainties. Given knowledge of the isolator flow physics and the simulation models
employed, the following potential sources of uncertainty were considered to examine their impact on the
isolator effectiveness as defined by the shock train length (L

iso

):

• spatial discretization error - EPISTEMIC

• onset of laminar to turbulence transition - EPISTEMIC

• facility supply pressure variability - ALEATORIC

• facility supply temperature variability - ALEATORIC

• facility supply turbulence intensity (0.01% to 5%) - EPISTEMIC

• facility wall temperature - EPISTEMIC

• isolator exit pressure variability - ALEATORIC

Given the isolated flow physics targeted by this validation exercise, the sensitivities in this effort were as-
sessed by simply observing the variability in L

iso

for a one-at-a-time variation of each uncertainty source.
A more thorough process7 would be required for more complicated scenarios, where the CFD practitioner
has little a priori knowledge of how the response might vary with each uncertainty parameter. Based on
the sensitivity assessment, and given the emphasis of illustrating the UQ process (rather than enhanc-
ing the refinement of uncertainty margins), the uncertainty sources considered for this turbulence model
validation exercise were limited to facility supply pressure, isolator exit pressure, transition onset, and nu-
merical discretization error. The uncertainty space was reduced even further by recognizing correlations
in the uncertainty sources. In particular, the ratio of the isolator exit to facility supply pressure was treated
as a single uncertainty source, which was hypothesized through subject matter expertise and justified via
sensitivity studies.

JANNAF 48th CS / 36th APS / 36th EPSS / 30th PSHS Joint Meeting, Dec. 4-7, 2017

Isolator Flowfield Description

Example 2: Isolator Dynamics Research Laboratory (IDRL)

The IDRL is an experimental apparatus at NASA Langley Research Center 
(LaRC) designed to be a validation testbed for numerical simulations of 
separated boundary layer flows in DMRJ isolators.
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High fidelity simulations were carried out using VULCAN-CFD, developed and 
maintained at LaRC’s Hypersonic Airbreathing Propulsion Branch (HAPB).

Lisol



Isolator Separation Length Metamodel Evolution

• The coarse grid model is converged over two orders of magnitude RMSE.
• Additional cases would not be helpful.

• The fine grid model is not converged, but metamodel prediction interval can 
be quantified for UQ propagation.
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Lisol/h = f(Backpressure ratio, turbulent transition location, grid level)



Uncertainty Propagation using Metamodels
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JANNAF 48th CS / 36th APS / 36th EPSS / 30th PSHS Joint Meeting, Dec. 4-7, 2017

Uncertainty Quantification Framework
Steps in the UQ process:
(1) Identify and characterize each uncertainty 
(2) Prioritize the sources of uncertainty
(3) Propagate the uncertainties through the 

“computational model” to extract the QoI

Do n = 1, Ne
Do m = 1, Na

evaluate QoI
End Do

End Do

Collect M 
PDFs of N 
samples to 
create CDF 
P-Box

Isolator simulation is a good uncertainty quantification test problem 
due to the sensitivity of the length of the separated isolator flow to 
quantities such as back pressure, grid level, turbulence model, etc.

Monte Carlo uncertainty propagation directly using CFD is too expensive. 
Medium grid level is order of magnitude more expensive than coarse grid 
level. Use metamodels to alleviate computational expense.

For IDRL UQ background, see R.A. Baurle, E.L. Axdahl, “Uncertainty Quantification of 
CFD Data Generated for a Model Scramjet Isolator Flowfield,” JANNAF, Dec 2017.

Lisol/h = f(Aleatory, Epistemic) = f(Backpressure ratio, transition location, grid level)



Isolator Separation Length Uncertainty Propagation
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Taking asymptotic grid convergence into account yields an Lisol/h
95% confidence interval of [13.55, 14.56] (~ 1 duct height)

14.56

13.55

0.975

0.025

L1 L*

Before drawing final P-Box, compute new CDF (L*) that takes 
discretization into account via grid convergence index (more details in 
backup).  The L* and L1 families form the new P-Box.



Summary and Conclusions
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Adaptive sampling has been demonstrated for two example problems in 
high speed air breathing propulsion.

• Using adaptive sampling with a convergence metric allows for a 
measure of confidence of how well saturated a model is.

• Tracking convergence of parallel models indicates where future 
resources should be focused.

• Adaptive sampling can be used to “batch” a group of promising cases, 
instead of simply relying on additional cases having good space filling 
properties.

• Adaptive sampling along with an appropriate metamodel form does a 
good job of resolving nonlinearities and near-discontinuities in design 
spaces.

• Adaptive sampling may be able to make UQ problems more tractable 
during the design process.



Erik L. Axdahl, Ph.D.
Research Aerospace Engineer
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Office: (757) 864-8318
email: Erik.L.Axdahl@NASA.gov
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Backup
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Fn/Wa Model Response Error
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Normal(-0.5773,2.08873)
MRE within +/- 5%

-5 -4 -3 -2 -1 0 1 2 3 4 5

How do the 20 holdback points not used 
to fit the Kriging metamodel compare 

against the model predictions?

Aside:
How does a least squares fit perform?

Is this bad?  Maybe not as long as 
your report the model’s prediction 
interval along with the mean model.

Normal(0.77918, 7.68911)
MRE within +/- 20%
Data has 5/101 violations of 95%  PI

-20 -15 -10 -5 0 5 10 15 20

As a deliverable, always report your model error 
properties along with the model itself.



Isolator Separation Length Uncertainty Propagation
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14.56

13.55
Taking asymptotic grid convergence into account yields an Lisol/h
95% confidence interval of [13.55, 14.56] (~ 1 duct height)

0.975

0.025
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!"# $∗ = !"# $1 + #) !"# $1 − !"# $2
2, − 1

Before drawing final P-Box, determine new CDF that takes discretization 
into account via grid convergence index.  The new CDF (L*) and L1 form 
the new P-Box.

Fs = 1.25
p = 1 (1st order accuracy)


