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Motivation and Rationale

Is Big data always better?
What did you give up for the knowledge you gained?

«  Why converge the model of Subsystem A to +/- 0.1% error when +/- 5%
would have sufficed?
« What if Subsystem B needed more resources [people, cluster time,
tunnel time] that could have been a better allocation of resources?
« So track both model convergence and the top down requirements of
the project.

« Why predefine your design space sampling scheme before collecting any
data?
« What if Subsystem C dedicated a significant number of samples that
did not contribute significantly to the variability of the model?
» So understand the error properties of the model and how to use that
information to choose the next best set of points to sample.

State-of-the-art R&D doesn’t go as planned...so at least be responsive
as you collect your data.



Adaptive Sampling Benefits

How does adaptive sampling buy its way onto a project?

« Better team communication
« Having more frequent conversations about how a dataset is evolving
avoids a “throw it over the fence” mentality.

« Improved metamodel confidence
« Treat your metamodel similarly to CFD, and check to see if it is
asymptotically converging.

« Catch issues earlier on
» Unusual or unexpected behavior, if nonphysical, can be corrected for
future data samples.

- Better allocation of resources
« Stop collecting subsystem data when it no longer improves the
fidelity of overall system predictions.
« Improve the efficiency of very high intensity tasks, such as UQ.



Application: High Speed Air Breathing Propulsion

Low to Moderate
Turbojet: Mach 0 - 2-3 Airframe

Integration
Ramjet: Mach 2 2> 5 _ _
DMRJ: Mach 4 > 8 High Airframe

Integration

Scramjet: Mach 8+
Our present regime of interest

Predicting the performance of integrated scramjet and DMRJ systems

requires efficient data collection, metamodeling, and UQ because:

1. Point (numerical or experimental) simulations are expensive due to
high enthalpy facilities or need for highly resolved, reacting CFD.

2. As airbreathing systems scale, they quickly outpace the size of existing
ground test facilities, requiring predictive flight CFD to be validated
against representative component ground testing.

Two examples of applying the adaptive sampling methodology in remainder of presentation




Example 1: Uninstalled Air-Specific Impulse

As a model problem, the maximum uninstalled air-specific impulse
performance of a hydrogen-fueled supersonic combustion propulsion cycle
was evaluated over a Mach number range of 6 - 12 and an inlet kinetic

energy efficiency range of 0.93 = 0.97. All other cycle parameters were
held to fixed values.
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This is a challenging design space to model because it is ridged due to not
being able to use a stoichiometric fuel-to-air ratio everywhere.



Adaptive Sampling Methodology

The adaptive sampling methodology
assumes that a metamodel is used in
tandem with the data collection.

1. Construct metamodel using the
existing collected data.

2. Use the model variance to search for
the next best point(s) to sample. For
multiple samples at once, rank
variance optima in descending order.

3. Perform data collection at the
selected points in the design space. G

4. Refit the metamodel and compute o
the RMSE to assess metamodel
convergence.

5. Repeat steps 2 2 4 until SV(Riackinise,; — Ri)
convergence or end of budget/time. RMSE = N

Fr/Wa Variance
4 IS >
Fn/Wa Variance
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The following analyses use a Gaussian Process (Kriging) metamodel form to model the raw data
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Uninstalled Fn/Wa Metamodel Evolution

Fn/Wa Model Convergence
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Example 2: Isolator Dynamics Research Laboratory (IDRL)
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The IDRL is an experimental apparatus at NASA Langley Research Center
(LaRC) designed to be a validation testbed for numerical simulations of
separated boundary layer flows in DMRJ isolators.
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High fidelity simulations were carried out using VULCAN-CFD, developed and
maintained at LaRC’s Hypersonic Airbreathing Propulsion Branch (HAPB).
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Isolator Separation Length Metamodel Evolution
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« The coarse grid model is converged over two orders of magnitude RMSE.
» Additional cases would not be helpful.
« The fine grid model is not converged, but metamodel prediction interval can
be quantified for UQ propagation. 9



Uncertainty Propagation using Metamodels

Isolator simulation is a good uncertainty quantification test problem
due to the sensitivity of the length of the separated isolator flow to
qguantities such as back pressure, grid level, turbulence model, etc.

Monte Carlo uncertainty propagation directly using CFD is too expensive.
Medium grid level is order of magnitude more expensive than coarse grid
level. Use metamodels to alleviate computational expense.
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For IDRL UQ background, see R.A. Baurle, E.L. Axdahl, “Uncertainty Quantification of
CFD Data Generated for a Model Scramijet Isolator Flowfield,” JANNAF, Dec 2017.




Isolator Separation Length Uncertainty Propagation

Before drawing final P-Box, compute new CDF (L*) that takes
discretization into account via grid convergence index (more details in
backup). The L* and L1 families form the new P-Box.
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Taking asymptotic grid convergence into account yields an Lisol/h
95% confidence interval of [13.55, 14.56] (~ 1 duct height)
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Summary and Conclusions

Adaptive sampling has been demonstrated for two example problems in &
high speed air breathing propulsion.

« Using adaptive sampling with a convergence metric allows for a
measure of confidence of how well saturated a model is.

« Tracking convergence of parallel models indicates where future
resources should be focused.

« Adaptive sampling can be used to “batch” a group of promising cases,
instead of simply relying on additional cases having good space filling
properties.

« Adaptive sampling along with an appropriate metamodel form does a
good job of resolving nonlinearities and near-discontinuities in design
spaces.

- Adaptive sampling may be able to make UQ problems more tractable
during the design process.
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Fn/Wa Model Response Error

How do the 20 holdback points not used :50'3/8&065 o least squares fit perform?
to fit the Kriging metamodel compare q P '
against the model predictions? =] |

| —— B
] M
/ \\ 20 -15 -10 -5 0 5 10 15 20
7'4 N\ Normal(0.77918, 7.68911)
MRE within +/- 20%

5 4 -3 2 -1 0 1 2 3 4 5 Data has 5/101 violations of 95% PI
Normal(-0.5773,2.08873) Is this bad? Maybe not as long as
MRE within +/- 5% your report the model’s prediction

interval along with the mean model.

As a deliverable, always report your model error
properties along with the model itself.




Isolator Separation Length Uncertainty Propagation

Before drawing final P-Box, determine new CDF that takes discretization'e =
into account via grid convergence index. The new CDF (L*) and L1 form
the new P-Box.
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Taking asymptotic grid convergence into account yields an Lisol/h
95% confidence interval of [13.55, 14.56] (~ 1 duct height)




