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Can we trust neural network predictions in new
situations?

* We consider data from the Mars rover
— Models are trained on laboratory data
— Models are applied to data collected on Mars

» Standard neural networks can perform well, but
don’t accurately quantify uncertainty

« We evaluate three approaches to Bayesian UQ
in neural networks
- How much trust can we place in predictions?

— We evaluate these methods with respect to
calibration (more than just accuracy of predictions)
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ChemCam spectroscopic data for remote analysis

« ChemCam measures atomic emission spectroscopy
« Elements emit light at characteristic frequencies
« Enables standoff quantification of specific elements
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Chemical analysis via regression modeling

The data analysis task has been traditionally treated as a regression problem.

observable

Chemical Composition
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Neural network regression for ChemCam data

Convolutional neural networks (CNNs) have been shown to work well.

CNN Layer Input Conv Pool Conv Pool Conv Conv Conv
—

CNN Input | A 1
LIBS Data "

000

CNN Output
Predicted
1650 >< 3 Component
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pectrum
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Quantified uncertainty is crucial for scientific insights
With great power comes great responsibility

* More complex models == overconfidence and overfitting?
 Trained on laboratory data, but deployed on Mars...
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Uncertainty quantification for neural networks

Standard neural network:
find a good single value for
each weight

Result: one prediction for
each input

UQ-aware neural network:
find a plausible distribution
for each weight
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Result: predlctlve
uncertainty (error bars)
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Bayesian inference for uncertainty quantification

» Bayesian inference gives a probability distribution over possible fitted models,
enabling (among other things) predictive uncertainty quantification (UQ)

Likelihood p(Y ‘ X 9) Describes likelihood of regression output Y conditional on
’ inputs X and parameters 6
Prior p(0) Describes prior probability of parameters 6

« The posterior distribution describes the probability over parameters after seeing

the data:

AAAAAAAAAAAAAAAA
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Bayesian inference for uncertainty quantification

* The posterior predictive distribution gives uncertainty over a new prediction by
sampling likely parameter settings
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Deep ensembles offer a simple, intuitive way to get
distributions over neural network weights

» Key idea: train multiple neural networks from different initial values
» Local maxima should correspond to modes of the Bayesian posterior

Ensemble members
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Variational inference optimizes over an approximation to
the true Bayesian posterior

« Goal: find an easy distribution (e.g., Gaussian) that approximates the posterior
« Can formulate a tractable objective function to optimize

« Can sample from approximate posterior for UQ

= Post.

= =  Approx.
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The Laplace approximation uses a Gaussian centered at
a good parameter value for UQ

Step 1: optimize loss Step 2: center a
function (standard neural Gaussian distribution
network training) to find around these

parameters for UQ
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Evaluating regression models with UQ

» Performance of regression models is often evaluated with accuracy

measures (such as root mean squared error)

« How to evaluate the uncertainty quantification?
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Oxide |Actual Weight % |Predicted Weight %
SiO2 58.2 59.1

MgO |9.8 10.1

Cao 5.1 4.6
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Evaluating predictive uncertainty intervals

« Coverage: how often does the credible
prediction interval contain the true value?
— Assessed on held-out test data

« BUT: intervals could be made infinitely
wide to achieve coverage

 Tighter intervals are more accurate (if
coverage is maintained)
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Sensitivity and robustness

L

To evaluate sensitivity to hyperparameter settings, we use interval score

If...

Score is...

True value inside interval

Interval width

True value outside interval

Interval width plus penalty (based on how far below or
above interval)

Lower values are better

We estimate sensitivity of interval score to variational inference

hyperparameters

Los Alamos
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Convolutional neural network (CNN) for ChemCam

* First, we developed a non-Bayesian CNN architecture and validated it on

ChemCam data

Convolution layer

-

Activation Function layer

Full Connected layer

Output layer

Convolution layers
learn filters to extract
features from spectra

Fully connected
layers map features
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to the output (oxide
weight percent)

[Yu and Yao 2023]
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ChemCam data set details

 All data from NASA PDS*
» Spectral measurements at 5,605 wavelengths

Si02

Number of targets | Total spectra

Training 452 90,000
Validation 55 11,000
Test 55 11,000

1.00
E 0.75 | |
20.50 “ r \ :
% 0.25 | ,l

Int

i
E—
‘ m—
14

\
| | LL AL 8 A AJ el \d_ Lk
0.00 kLA e RPN AT BN RSt BB Dic A ot i Dl

500 550 600 650 700 750 800 850
Wavelength (nm)

@

Chemical composition
(oxide weight percent)

°
° S
)
o o &®
() Lo® )
°
[ )
®
oe
e®
O
7724 T )
i’.‘.‘@s}‘o’ e
%070 o o
%
.‘.
() e o
%
s
S
N
q5:3% o
A.l'.'.‘
@S @ o0 00
0 50 0 20
FeOT MgO

* https://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_ 1xxx/

1% Los Alamos

NATIONAL LABORATORY

neklein@lanl.gov


mailto:neklein@lanl.gov

CNN predictive accuracy

« Our CNN architecture (non-Bayesian) can predict more accurately on a held-
out test set than a baseline linear method (partial least squares)

SiO2 Reference vs Predicted Oxide Weight Percent

PLS (RMSE: 9.48) CNN (RMSE: 5.33)
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Predictive uncertainty interval coverage

A T
« Coverage: how often does the credible : Prr:?jicted
prediction interval contain the true value? . Interval
— Assessed on held-out test data 1
" >
Observed coverage of 95% credible prediction interval
SiO, TiO, Al,O4 FeOT | MnO MgO CaO Na,O K,O
Deep Ensemble | (0.89| 0.90| 0.87| 0.82 0.91 0.91 0.93
Laplace 094 092| 0.93| 0.89 0.93| 0.93
Vi 093| 093| 0.84| 0.88 0.93 0.91 0.85
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Predictive uncertainty interval width

* Intervals could be made infinitely wide to
achieve coverage

 Tighter intervals are more accurate (if

coverage is maintained)
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Average width of 95% credible prediction interval (oxide weight percent)

SiO, TiO, Al,O4 FeOT | MnO MgO CaO Na,O K>,O
Deep Ensemble | 10.89 5.22 286 | 5.61 1.54 | 1.57
Laplace 1.18 5.02| 4.39
Vi 11.49( 119| 480 520| 443| 3.02( 500| 1.60| 1.51

1% Los Alamos
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Application to Mars data

» Mars data may exhibit distribution shift due to
variable distance, plasma temperature, viewing

angle, etc.

 How do the uncertainty intervals change on
Mars compared to Earth data?

« We computed relative percent change from

(Widthgeren — Widthazars|

Earth to Mars interval width: Widthgartn

SiO, TiO, AlLOs; | FeOT MnO MgO CaO Na,O K,O
Deep Ensemble | 7.56% | 16.94% | 2.17% | 148.87% 13.32 | 62.30% | 29.70% | 21.45% | 2.78%
Laplace 0.20% | 0.32% | 0.58% 0.52% 0.55 0.5% | 0.39% | 0.57% | 0.54%
VI 6.67% | 13.50% | 6.13% | 42.51% 0.01 | 60.83% | 13.43% | 0.85% | 1.02%
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Sensitivity of variational inference to hyperparameters

The quality of variational inference is primarily impacted by prior settings,
loss weighting, and learning rate.
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Impact of priors in

BNN prior with 2 layers

neural networks

BNN prior with 4 layers

BNN prior with 8 layers
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Bayesian Neural Network

How to select the prior? -

e
I@ - Actual prior knowledge (not possible to elicit) @z Eb
NN N e

I@ - “Uninformative” (not computable for NNs, or not
actually uninformative)

>&°
(=)
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Uniform prior

(Bayes and Laplace, 18th and 19th century)

Standard

(Jeffreys, 1946)

Reference prior

Maximum entropy prior BNN prior with 2 layers BNN prior with 4 layers BNN prior with 8 layers
(Jaynes, 1968) h a 7
— | \‘i‘r“ VV

(Bernardo, 1979)

https://www.statlect.com/fundamentals-of-statistics/uninformative-prior

Image from [Tran et al 2022]

? » Data-driven prior selection
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Challenges encountered in this analysis

« Data limitations
- While we have many example spectra, we have a limited number of targets
— Spectra can be noisy

« Computational complexity
— Ensemble: can be parallelized, but requires retraining CNN repeatedly
— VI: for mean-field VI, twice as many parameters and more expensive loss function
— Laplace: we used subnetwork (fixed some parameters), otherwise gets very costly

» Sensitivity to hyperparameters
— VI and Laplace showed high sensitivity to prior, model hyperparameters
— Laplace can be numerically unstable

‘:5 Los Alamos neklein@lanl.gov
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Summary

Uncertainty quantification for neural networks is hard.

Bayesian methods are attractive, but...

« Challenging computationally

« Difficult to choose model and prior

» Often see poor performance in practice

We are investigating sensitivity to the prior and alternate inference methods.
* |nitial code base (in progress): www.github.com/lanl/multiverse
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