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Can we trust neural network predictions in new 
situations?
• We consider data from the Mars rover

− Models are trained on laboratory data 
− Models are applied to data collected on Mars

• Standard neural networks can perform well, but 
don’t accurately quantify uncertainty

• We evaluate three approaches to Bayesian UQ 
in neural networks
− How much trust can we place in predictions?
− We evaluate these methods with respect to 
calibration (more than just accuracy of predictions)

mailto:neklein@lanl.gov


4Natalie Klein (neklein@lanl.gov) 4/23/25

ChemCam spectroscopic data for remote analysis
• ChemCam measures atomic emission spectroscopy
• Elements emit light at characteristic frequencies
• Enables standoff quantification of specific elements

[Images: NASA/JPL-Caltech/LANL; Sirven et al 2007]
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Chemical analysis via regression modeling
The data analysis task has been traditionally treated as a regression problem.

state observable
predictive 

model

Oxide Weight %

SiO2 58.2

MgO 9.8

CaO 5.1

… …

Chemical Composition
ChemCam measurement

mailto:neklein@lanl.gov


6Natalie Klein (neklein@lanl.gov)  4/23/25

Neural network regression for ChemCam data
Convolutional neural networks (CNNs) have been shown to work well.

[Li et al 2020]
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With great power comes great responsibility
Quantified uncertainty is crucial for scientific insights

• More complex models == overconfidence and overfitting?
• Trained on laboratory data, but deployed on Mars…

[Images: NASA/JPL-Caltech/LANL]
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Uncertainty quantification for neural networks

[Figures adapted from Blundell et al 2015]

Standard neural network: 
find a good single value for 
each weight

Result: one prediction for 
each input

UQ-aware neural network: 
find a plausible distribution 
for each weight

Result: predictive 
uncertainty (error bars)
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Bayesian inference for uncertainty quantification
• Bayesian inference gives a probability distribution over possible fitted models, 

enabling (among other things) predictive uncertainty quantification (UQ)

Likelihood Describes likelihood of regression output Y conditional on 
inputs X and parameters θ

Prior Describes prior probability of parameters θ
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• The posterior distribution describes the probability over parameters after seeing 
the data:
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Bayesian inference for uncertainty quantification
• The posterior predictive distribution gives uncertainty over a new prediction by 

sampling likely parameter settings

[Botsas et al 2022]
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Deep ensembles offer a simple, intuitive way to get 
distributions over neural network weights
• Key idea: train multiple neural networks from different initial values
• Local maxima should correspond to modes of the Bayesian posterior 
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Ensemble members
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Variational inference optimizes over an approximation to 
the true Bayesian posterior
• Goal: find an easy distribution (e.g., Gaussian) that approximates the posterior
• Can formulate a tractable objective function to optimize
• Can sample from approximate posterior for UQ

Post.

Approx.
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The Laplace approximation uses a Gaussian centered at 
a good parameter value for UQ

[Figure adapted from Daxberger et al 2021]

Step 1: optimize loss 
function (standard neural 
network training) to find 
good parameter values

Step 2: center a 
Gaussian distribution 
around these 
parameters for UQ
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Evaluating regression models with UQ
• Performance of regression models is often evaluated with accuracy 

measures (such as root mean squared error)
• How to evaluate the uncertainty quantification?

Oxide Actual Weight % Predicted Weight %

SiO2 58.2 59.1

MgO 9.8 10.1

CaO 5.1 4.6

… … …
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Evaluating predictive uncertainty intervals
• Coverage: how often does the credible 

prediction interval contain the true value? 
− Assessed on held-out test data y

x

True
Predicted
Interval

• BUT: intervals could be made infinitely 
wide to achieve coverage

• Tighter intervals are more accurate (if 
coverage is maintained)

y

x
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Sensitivity and robustness

• To evaluate sensitivity to hyperparameter settings, we use interval score

• Lower values are better
• We estimate sensitivity of interval score to variational inference 

hyperparameters

If… Score is…

True value inside interval Interval width

True value outside interval Interval width plus penalty (based on how far below or 
above interval)
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Convolutional neural network (CNN) for ChemCam
• First, we developed a non-Bayesian CNN architecture and validated it on 

ChemCam data

[Yu and Yao 2023]

• Convolution layers 
learn filters to extract 
features from spectra

• Fully connected 
layers map features 
to the output (oxide 
weight percent)
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ChemCam data set details
• All data from NASA PDS*
• Spectral measurements at 5,605 wavelengths

* https://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/

Number of targets Total spectra

Training 452 90,000

Validation 55 11,000

Test 55 11,000

Chemical composition
(oxide weight percent)
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CNN predictive accuracy
• Our CNN architecture (non-Bayesian) can predict more accurately on a held-

out test set than a baseline linear method (partial least squares)

SiO2 Reference vs Predicted Oxide Weight Percent
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Predictive uncertainty interval coverage
• Coverage: how often does the credible 

prediction interval contain the true value? 
− Assessed on held-out test data

SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O

Deep Ensemble 0.89 0.90 0.87 0.82 1.00 0.91 0.96 0.91 0.93
Laplace 0.94 0.92 0.93 0.89 0.95 0.97 0.95 0.93 0.93
VI 0.93 0.93 0.84 0.88 1.00 0.93 0.97 0.91 0.85

Observed coverage of 95% credible prediction interval

y

x

True
Predicted
Interval
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Predictive uncertainty interval width

SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O

Deep Ensemble 10.89 0.68 5.22 3.76 2.44 2.86 5.61 1.54 1.57
Laplace 10.36 1.18 4.33 5.02 4.39 2.85 4.79 1.48 1.39
VI 11.49 1.19 4.80 5.20 4.43 3.02 5.00 1.60 1.51

Average width of 95% credible prediction interval (oxide weight percent)

• Intervals could be made infinitely wide to 
achieve coverage

• Tighter intervals are more accurate (if 
coverage is maintained)

y

x
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Application to Mars data

SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O

Deep Ensemble 7.56% 16.94% 2.17% 148.87% 13.32 62.30% 29.70% 21.45% 2.78%

Laplace 0.20% 0.32% 0.58% 0.52% 0.55 0.5% 0.39% 0.57% 0.54%

VI 6.67% 13.50% 6.13% 42.51% 0.01 60.83% 13.43% 0.85% 1.02%

• Mars data may exhibit distribution shift due to 
variable distance, plasma temperature, viewing 
angle, etc.

• How do the uncertainty intervals change on 
Mars compared to Earth data?

• We computed relative percent change from 
Earth to Mars interval width:
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Sensitivity of variational inference to hyperparameters

Work by Scott Koermer (postdoc)

The quality of variational inference is primarily impacted by prior settings, 
loss weighting, and learning rate.
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Impact of priors in neural networks

[Tran et al 2022]
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How to select the prior?
• Actual prior knowledge (not possible to elicit)
• “Uninformative”  (not computable for NNs, or not 

actually uninformative)

• Data-driven prior selection

https://www.statlect.com/fundamentals-of-statistics/uninformative-prior
Image from [Tran et al 2022]

Standard 
“uninformative” priors

mailto:neklein@lanl.gov


294/23/25

Talk outline

• Introduction
• Methodology overview
• Evaluation metrics and framework
• Results and findings
• Takeaways and discussion



30Natalie Klein (neklein@lanl.gov)  4/23/25

Challenges encountered in this analysis
• Data limitations

− While we have many example spectra, we have a limited number of targets
− Spectra can be noisy

• Computational complexity
− Ensemble: can be parallelized, but requires retraining CNN repeatedly
− VI: for mean-field VI, twice as many parameters and more expensive loss function
− Laplace: we used subnetwork (fixed some parameters), otherwise gets very costly

• Sensitivity to hyperparameters
− VI and Laplace showed high sensitivity to prior, model hyperparameters 
− Laplace can be numerically unstable
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Summary

Uncertainty quantification for neural networks is hard.

Bayesian methods are attractive, but…
• Challenging computationally
• Difficult to choose model and prior 
• Often see poor performance in practice

We are investigating sensitivity to the prior and alternate inference methods.
• Initial code base (in progress): www.github.com/lanl/multiverse
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