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1. Overview
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Why Do We Need Equation of State (EOS)?

» Essential for modeling behavior of materials.
» Our interest is in dissociating materials (e.g., |

CO,) under extreme conditions.

» Applications include planetary science and
inertial confinement fusion (ICF).
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3. Statistical Methodology

2. Equation of State :
Latent Surface Modeling:

The EOS model describes the
relationship between thermodynamic
variables (e.g., pressure, temperature,
volume) of materials.

F=F(M(T,p),T,p)is our EQS, where
M is the molar mass surface.  Gaussian Radial Basis Functions

Data is on partial derivatives of F such - Spline model is M(T, p) = ®5, where
 ®(T, p)are basis functions.

as internal energy O, (s) = exp(—2||s — e |?)

+ We model the latent molar mass M(T, p)
~using semi parametric approach.

~« Regularization techniques applied to aid
 basis selection and prevent overfitting.

a(F/T . . |
E=-—-T"4 ( (F/ )) * Here uy is a knot location and £ is the
oT v ~length scale.
and pressure ~+ We want to estimate the basis coefficients 6.
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The CO, data shown in the figure

Multi-Resolution: Radial Basis Functions
placed at varying resolution to capture
global and local variations in the data.
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4. Results

* Multiple optimization algorithm were

applied to minimize the mean squared
error (MSE) for predictions of E and P.

» Estimated energy and pressure surfaces

align well particularly at higher T and p.
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Figure from [1]

Why is Developing EOS Challenging?

« Need to infer latent molar mass surface
from limited theoretical calculations and
noisy experimental data.

» Existing EOS models rely on hand-tuned
parameters that represent the molar mass
surface as a function of temperature and
density.

Our Goal:

» Automate EOS model development for
chemically dissociating systems to improve
model accuracy and fit while minimizing
computational overhead.

This work was performed under the auspices of the U.S.
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+ Molar mass surface plot shows smooth

transition across regions
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» Adaptive K-Means Clustering: dynamically

1e+04

Temperature (K)
o
S
(8

1e+02-
0.001

0.010
Density (g/cc)

0.100

20
! 19
18
17

16
15

," ~ place knots in regions where the data are
' i

Temperature (K)
>

o i i dense.
| \ 5\ Data Points A  Knot Locations
10° \ \ g
1 ° R LT
< 75000 = 2
101‘0.7 10° 10° 10° 10° 102 10" 10° 10' 10° 10° it A v &
: Density (g/cc) g 20y fA ‘- n a
i o)
; . '\ A
~+ Method: We employ a semi- £ 25000 —ad : ai i
~ parametric interpolation approach = ‘ﬁ 4 : U
that integrates these diverse data o Ny . .
sources to bridge gaps in the EOS. Density (g/cc)

5. Future Work

» Explore alternative basis functions and

regularization methods to improve
Interpolation accuracy and robustness.
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