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BACKGROUND: INTEGRATED TEST & EVALUATION

Motivation and Methods
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WHY INTEGRATED TESTING?

DoD programs collect data throughout the acquisition life cycle, for example:

Historical Data, Model Data Developmental Operational Operational

SME Knowledge Test Data Test Data Performance

Leveraging all data enables better understanding of systems earlier...

...allowing for fewer or more optimal tests later
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PoLicy Motivation (DoDI 5000.98) AIRC s

3.1(a): 3.1(c):

“OT&E and LFT&E planning, execution, “Science and technology-based OT&E and

analysis, and reporting activities will use the LFT&E will enable efficient use of data from

latest advances in science (e.g., design of multiple data sources (e.g., contractor test

experiments, statistical inference methods, (CT), developmental test (DT), operational test

or big data analytics) to ... determine, with (OT), and live fire test (LFT) data or M&S

scientific rigor, the preliminary and final results). Improved sequential testing using

operqﬁonq| effecﬁvenessl Suifqbi“fy, BCIYGSiCI“ or similar inference methods ...

survivability, and lethality (as applicable) of are critical to dynamically optimize the

DoD systems.” planning, execution, analysis, and reporting
of integrated T&E, OT&E, and LFT&E across
the acquisition life cycle.”
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FREQUENTIST METHODS

Fit a statistical model to all of the data

Naive: Assume all data is equivalent and fit to all data equally

Blocking: Try to account for differences in data sources by
adding source or phase-specific factors to the model

" Example: Add a shift parameter to account for possible biases in data sources
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BAYESIAN INFERENCE

Relates the probability of a parameter value 8 given data Y
(P(0]Y)) to the probability of Y given 8 and the probability of
0:

P(8|Y) « P(Y|6) P(6)
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BAYESIAN INFERENCE

Relates the probability of a parameter value 8 given data Y
(P(0]Y)) to the probability of Y given 8 and the probability of
0:

P(8|Y) « P(Y|0)[P(6)

Prior
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BAYESIAN INFERENCE

Relates the probability of a parameter value 8 given data Y
(P(0]Y)) to the probability of Y given 8 and the probability of
0:

P(0IY) x|P(Y|0)]P(6)

Likelihood Prior
(Data)
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BAYESIAN INFERENCE

Relates the probability of a parameter value 8 given data Y
(P(0]Y)) to the probability of Y given 8 and the probability of
0:

P(01Y)|x|P(Y|0)]P(6)

Posterior Likelihood Prior
(Data)
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BAYESIAN INFERENCE

Relates the probability of a parameter value 8 given data Y
(P(0]Y)) to the probability of Y given 8 and the probability of

0:
P(01Y)|x|P(Y|0)]P(6)
Posterior Likelihood Prior
(Data)

Models human learning: Understanding (prior) + Experience
(likelihood) = Updated understanding (posterior)
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SINGLE TEST PHASE

T&E Data

Prior Posterior
(Theory, SME Bayesian (System
Input, Other Inference Performance +

Systems) Uncertainty)
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SINGLE TEST PHASE

T&E Data
= -
Prior Posterior Downweight/Adjust Prior
. as Necessar
I
(Theory, SME Bayesian (System y (Based on

Previous Test
Phase)

Input, Other Inference Performance +

Systems) Uncertainty)

-  ACQUISITION INNOVATION RESEARCH CENTER

12



INFORMATIVE PRIORS
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AIRC

SINGLE TEST PHASE

T&E Data

Prior Posterior
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APPLICATION TO T&E FOR DOD PROGRAMS
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CONSIDERATIONS FOR DESIGN & EVALUATION OF TESTS AIRC =i

Safety Minimal risk (not live projectile) — High risk (live fire)

Cost $— $8$

Resource Availability Available — Partially available — Needs to be developed
Schedule Easy & quick — Hard & extensive coordination

Historical operational performance data Yes same factors — Yes but missing key factor(s) — None

. . . Yes accurate and validated over time — Yes but not well understood
Modeling and Simulation .
and /or missing key factor(s) — None

Scale Single component — Parallel systems — Series system
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CONSIDERATIONS FOR DESIGN & EVALUATION OF TESTS AIRC =i

Safety Minimal risk (not live projectile) — High risk (live fire)

Cost $— $8$

Resource Availability Available — Partially available — Needs to be developed
Schedule Easy & quick — Hard & extensive coordination

Historical operational performance data Yes same factors —

Variety of DoD programs means that a
variety of analysis approaches may be
appropriatel

Y t d vall
Modeling and Simulation ©s qccurc.: e. and va
and /or missing key f

Scale Single component —
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PRACTICAL CHALLENGE (FOR ACADEMIA, ANYWAY)

Real programmatic data is often restricted
"Hard to access
"Hard to engage students on

*Hard to publish/disseminate results

Solution: Synthetic data mimicking real challenges

" Benefit: We can evaluate methods because we know the “truth”
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A SYNTHETIC CASE STUDY
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BACKGROUND: SYNTHETIC RADAR MODELS

IDA created' the following model of a synthetic counterfire radar:
Y =79 —6B+4D — 75F + 5AF — 55BD + 4.5DF + 4D? — 9F?

with the following factors:

Design Factor Label Type Levels
Quadrant Elevation A Continuous Low, High
Aspect Angle B Continuous Incoming, Crossing
Munition Type C Categorical Mortar, Rockets, Artillery
Shot Range D Continuous Low, High
Operating Mode E Categorical 90, 360
Radar to Weapon Range F Continuous Low, High

' Ahrens, Monica, Rebecca Medlin, Keyla Pagdén-Rivera, and John W. Dennis. “Case Study
on Applying Sequential Analyses in Operational Testing.” Quality Engineering 35, no. 3
(December 12, 2022): 534—45. https://doi.org/10.1080/08982112.2022.2146510.
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USING THE MODELS AIRC imamms

Rationale

79 —6B +4D — 7.5F —5.5B x D + 4.5D * F

Operations (“Real Life”) Most complicated — full model 4 SA%F 4 4D? — 9F2

Operational Testing (OT) Less fidelity 'eran operations — 79 —6B +4D —7.5F —55B *D 4+ 45D x F
drop quadratic terms +5A«F

Developmental Testing (DT) Drop Quadrant Elevation (A) 79 — 6B +4D —75F —55B «*D + 45D x F

Modeling & Simulation (M&S) Drop Radar to Weapon Range (F) 79 — 6B + 4D — 5.5B * D
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GENERATING DATA

Assume location error is normally distributed in two dimensions:
Rayleigh distribution

Models give distribution mean, which can then be used to
generate data

Rayleigh Mean
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CAPABILITIES

Can compare:
* Analysis methods

" Design of experiments techniques (test designs via skpr package)

For problems with:
" Different numbers of test phases/data sources
"Varying data sizes, e.g., trials and reps by phase
" Evolving test factors
= Shifts /biases in test data (e.g., in M&S data)

" Different error /noise in measurements

R ACQUISITION INNOVATION RESEARCH CENTER
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RESULTS
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COMPARING METHODS

Five methods considered:

"Frequentist:

— Using OT data only
— All data, Blocking: With shift factors added for M&S and DT
— All data, Without blocking: No shift factors for M&S and DT

*Bayesian informative priors w/ downweighting:

— Resetting intercept uncertainty to prior value
— Doubling intercept uncertainty

Key metric: RMSE between Rayleigh means
" Fitted model vs. Operational model

* Computed on full factorial dataset generated using the Operational model

ACQUISITION INNOVATION RESEARCH CENTER
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COMPARING METHODS

Five methods considered:

"Frequentist:

— Using OT data only
— All data, Blocking: With shift factors added for M&S and DT
— All data, Without blocking: No shift factors for M&S and DT

*Bayesian informative priors w/ downweighting:

— Resetting intercept uncertainty to prior value

— Doubling intercept uncertainty

Benefit of working with synthetic
data: We know the “truth”!

Key metric: RMSE between Rayleigh means

" Fitted model vs. Operational model «

* Computed on full factorial dataset generated using the Operational model
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EXAMPLE 1: LimiTED OT AIRC s

Consider scenarios where OT is limited and

M&S is quite a bit larger than DT

M&S Trials Full factorial (9 trials)
M&S Reps 100
. DT Trials 10, 20, 40

Intuition: DT Reps 5,10

" Integrated testing should provide a benefit OT Trials 10, 20

" Challenge of managing different data sizes and OT Reps 1,2

changing test factors DT Optimality D

OT Optimality D

(Additional assumption: No more than 200 DT datapoints.)
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EXAMPLE 1: INTEGRATED VS. SINGLE PHASE

Error is lower for integrated
model with blocking than for
OT-only model

Takeaway: Benefit to
integrating information

w
o
1

RMSE (Frequentist, All Data, Blocking by Phase)
- %)
o o

AIRC
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RMSE (Frequentist, OT Only)
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EXAMPLE 1: BAYESIAN

Error is lower with less
aggressive downweighting

Takeaway: Benefit to more
aggressively integrating
information

N
(@)

N
O

RMSE (Bayesian Inf. Prior, Intercept Reset)
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EXAMPLE 1: BLOCKING

Error is lower for integrated .|
. ° (@] y
model without blocking £
o
2 7 T #0T
o // 40
Takeaways: S
= ’ 30
* Blocking shifts just fits bias due to <™ )
) /
noise in small datasets E K 20
" Blocking is bad? ;{10_ /// 10
L 7’
W
%) 8
= “
1 5 - (pf/
I’/ !

: | | Y/ r—
5 10 15 20 25
RMSE (Frequentist, All Data, Blocking by Phase)
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EXAMPLE 1: SUMMARY

®
Takeaways: 5
° L %
" Integrated testing helps provide 5 30
better models g .
-
" Without blocking seems to do a 5
little better o
g
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c [ ]
©
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Method
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EXAMPLE 2: LIMITED OT WITH M&S, DT SHIFTS AIRC s

Consider scenarios where OT is limited and

M&S is quite a bit larger than DT

M&S Trials Full factorial (9 trials)
* Add random bias to M&S, DT model intercepts M&S Reps 100
-“ DT Trials 10, 20, 40
DT Reps 5,10
m 99.6 86.0 79 OT Trials 10, 20
OT Reps 1,2
DT Optimality D
Intuition: OT Optimality D
"Integrated testing should provide a benefit (Additional assumption: No more than 200 DT datapoints.)

"Biases in some of the data might change results?
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EXAMPLE 2: BAYESIAN

Effect of downweighting is
less clear

— - N
o [@)] o
[ | [ | [}

RMSE (Bayesian Inf. Prior, Intercept Reset)

a
]

I
/
/
/
7/
7
/7
7/
/
/
7/
7
7/
/7
7/
rd
7
P4
7/
7/
/
/
/
/
r'd
rd
Q V4 -
/ o
7/
/
/
e
L /k_, 0
O 7 6
@ 0 ®
/‘/ ® -
V4
7 0O
Vanline
| Y —
) 10 15 20

AIRC

ACQUISITION INNOVATION
RESEARCH CENTER

#OT
40

30

20

10

RMSE (Bayesian Inf. Prior, Intercept DW = 2)

-  ACQUISITION INNOVATION RESEARCH CENTER

32



EXAMPLE 2: BLOCKING AIRC =

Error is dramatically lower
o . o) ’
for integrated model with £ 30 at
. 3 .’
blocking i
Z K #OT
] .Y R 40
g 00) " ¢’ e
= 20 o OL // 30
Takeaways: = s
" Blocking allows accounting for < e 20
3 e
differences in data sources 8 7 10
LL 7/
" Blocking is good? w07 o
= /
o e
l’/ ! ! |
10 20 30

RMSE (Frequentist, All Data, Blocking by Phase)
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EXAMPLE 2: NON-BLOCKING VS. SINGLE-PHASE

Non-blocking model
actually makes estimates
worse than single phase
model

Takeaways:

" Integration of information can
make analysis worse if not done
carefully

RMSE (Frequentist, All Data, No Blocking)
N
o

AIRC
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EXAMPLE 2: SUMMARY

Integration without blocking

makes estimates
" Worse than using OT only

w
o
1

Root Mean Squared Error (Lower is Better)

" Much worse than other integration .
methods 2010
l
Takeaways: T
" Integrated testing mostly helps X 3 > 2 2
provide better models % gfff E E :
* But some care must be taken in : g f:; g
how the data is integrated ;% g :
Method
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CONCLUSIONS
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CONCLUSIONS AIRC s

Testbed for evaluating methods for integrating T&E data, based on
DoD-like model

Can mimic many challenges DoD programs face
* Different numbers of test phases/data sources
" Varying data sizes, e.qg., trials and reps by phase
" Evolving test factors
= Shifts /biases in test data (e.g., in M&S data)
* Different error /noise in measurements

Results illustrate both the promise of integrating information but also
some potential pitfalls
" Note: Importance of having enough information about data collection to integrate

ACQUISITION INNOVATION RESEARCH CENTER
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FUTURE WORK AIRC =i

* Other points in “consideration-space”

. . Safety
* Other DoD-inspired models
Cost
Resource Availabilit
Compare: !
" Analysis methods Schedule

" Design of experiments techniques

— Test designs via skpr package Historical operational performance data

Modeling and Simulation

Scale
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Limited
OT?

System/

Traditional
Methods

Example 1: Priors
from SMEs/past
systems

Components?

Components

Sequential?

Example 5:
System of Systems

RESEARCH CENTER

LONG-TERM GOAL: DECISION TREE FOR BEST PRACTICES AIRC

Example 2:
Changed

Factors? Evolving Test

Conditions

Example 3:

Quality?
e Validating w/ OT

Example 4:

Evolving data
quality

Example 6: Kill
Chain
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LONG-TERM GOAL: DECISION TREE FOR BEST PRACTICES AIRC

Example 2:
Changed

Factors? Evolving Test

Conditions

Example 3:

Quality?
e Validating w/ OT

Example 4:

Evolving data
quality

Example 6: Kill
Chain
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LONG-TERM GOAL: DECISION TREE FOR BEST PRACTICES AIRC

Limited Traditional Changed Example 2:

OT2 Methods Factors? Evolving Test

Conditions

Example 1: Priors
from SMEs/past Quality?
systems

Example 3:
Validating w/ OT

Example 4:

System/
Components?

Evolving data

quality

Components . .
Note: Highly notionall

Sequential?
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QUESTIONS? AIRC s

freq:ot_reps -

freq:ot_trials -

M . ot_trials
Justin Krometis nfpr_dw2:d reps
noblock:dt_reps -

infpr_dw2:0t_reps -

. e o . . . dt_trials 1
Virginia Tech National Security Institute ot_trialsof_reps
infpr:dt_trials 1

infpr_dw2:dt_trials -

. k R @ d gt_tria:s:gt_reps .
t_trials:dt_reps

IKrometis(Q)vt.edu e repe
infpr:ot_reps -
freq:dt_reps -

ot _reps A
noblock:dt_trials -
noblock:ot_reps -
ot_trials:dt_reps 4
dt_reps:ot_reps
infpr:ot_trials 1
infpr_dw2
infpr_dw2:ot_trials -
dt_reps 4

infpr -

freq:dt_trials +
dt_trials:ot_trials
noblock:ot_trials 7
freq 1

noblock -

Parameter

0.0
3

0.6

o
Coefficient

-  ACQUISITION INNOVATION RESEARCH CENTER

43


mailto:jkrometis@vt.edu

ACQUISITION INNOVATION
RESEARCH CENTER

BACKUP SLIDES
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EXAMPLE 1: FACTORS DRIVING RMSE

/
/
I S /
4
OT Trials A - | ad
/7
OT Reps A l 301 , 1
— g Method
o ! ’ Bayes Inf., Int. DW =2
© Freq., No Blocking 4 _ o] .’
= 0 , Bayes Inf., Int. Reset
o - o 20 . _
o DT Trials 4 I = e Freq., Blocking
o L ’
DT Reps - | g L’ Freg., No Blocking
7/
n'd
Bayes Inf., Int. Reset 1 I //, Freg., OT Only
10 - ~
Bayes Inf., Int. DW = 2 - - I & S h
g, B
10O o 10O s
N o N v
o o o ,/
Coefficient . ' i
10 20 30
RMSE
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EXAMPLE 1: INTERACTIONS AIRC =

noblock

infor_dw2

ot_trials
dt_trials:dt_reps
dt_trials
freq:ot_reps
ot_reps
noblock:dt_reps
infor_dw2:dt_reps
infpr_dw2:dt_trials
dt_reps
dt_trials:ot_reps
noblock:dt_trials
freq:ot_trials
dt_reps:ot_reps
freq:dt_reps
infpr:ot_trials
freq:dt_trials
infpr:dt_reps
infpr:ot_reps
ot_trials:ot_reps
infpr:dt_trials
dt_trials:ot_trials
infpr
noblock:ot_reps
ot_trials:dt_reps
infpr_dw2:ot_reps
infpr_dw2:ot_trials
noblock:ot_trials

Parameter

freq
) & 5
N c)_ o~
< o o
Coefficient

-  ACQUISITION INNOVATION RESEARCH CENTER

46



Parameter

EXAMPLE 2: FACTORS DRIVING RMSE

OT Trials 1

OT Reps -

Freq., OT Only A
Freq., No Blocking -
DT Trials 1

DT Reps -

Bayes Inf., Int. Reset -

Bayes Inf., Int. DW = 2

1 1
< ©
o o
Coefficient

0.24
0.84

RMSE (Predicted)

ACQUISITION INNOVATION
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Method
Bayes Inf., Int. DW = 2
Bayes Inf., Int. Reset
Freq., Blocking
Freq., No Blocking
Freq., OT Only
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EXAMPLE 2: INTERACTIONS AIRC =

freq.ot_reps
freq:ot_trials
ot_trials
infpr_dw2:dt_reps
noblock:dt_reps
infpr_dw2:ot_reps
dt_trials
ot_trials:ot_reps
infpr:dt_trials
infpr_dw2:dt_trials
dt_trials:ot_reps
dt_trials:dt_reps
infpr:dt_reps
infpr:ot_reps
freq.dt_reps

ot _reps
noblock:dt_trials
noblock:ot_reps
ot_trials:dt_reps
dt_reps:ot_reps
infpr:ot_trials
infpr_dw?2
infpr_dw2:ot_trials
dt_reps

infpr

freq:dt_trials
dt_trials:ot_trials
noblock:ot_trials
freq

noblock

Parameter

0.6

0

o

Coefficient
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EXAMPLE 3: INTERACTIONS AIRC =

Unbiased M&S /DT Biased M&S /DT

ot_trials ot_trials g |
freq:ot_trials ¢ - noblock:dt_trials ¢ [
noblock I infor_dw2:ot_reps 4 -l
ot_reps [ ot_reps 1 1l
freq:ot_reps I freq:ot_trials 4 -l
infor_dw2:dt_trials I infpr_dw2:ot_trials [ |
infor_dw2 L noblock:dt_reps [ |
dt_reps [ freq:ot_reps [ |
hoblock:dt_trials I ot_trials:ot_reps [ |
ot_trials:ot_reps Il dt_reps |
infpr_dw2:dt_reps [ | freq:dt_reps
dt_trials:dt_reps B infpr:ot_reps
5 infpr:dt_trials | 5 infor:dt_trials
¥ infpr:ot_trials i 5 infor:dt_reps
= infpr:dt_reps i = infpr:ot_trials
© infor:ot_reps | @ dt trials:dt reps
@ noblock:dt_reps i © freq:dt_trials
O dt_trials:ot_reps | O dt_trials:ot_reps
dt_reps:ot_reps | dt_reps:ot_reps
ot_trials:dt_reps B hoblock:ot_trials
dt_trials N noblock:ot_reps |
freq:dt_trials N ot_trials:dt_reps |
dt_trials:ot_trials N dt_trials |
infor_dw2:ot_reps I infpr |
infpr | dt_trials:ot_trials |
freq:dt_reps e infor_dw2:dt_trials ||
infpr_dw2:ot_trials I infpr_dw2:dt_reps ]
noblock:ot_reps I freq e
noblock:ot_trials I infpr_dw?2 I
e — "1 noblock L_— — .
LII) o 0 o o] (@] w o o o
S S <) - ~ =) I © ~ )
o o o o o o o o o -~
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