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Integrating Uncertainty Quantification to Planetary Entry Systems 
Modeling and Simulation
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Computational Model (CM)
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Model Input Uncertainty: Operating conditions, vehicle shape, parameters 
in turbulence models, chemical kinetics, ablation, radiation, etc. 
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Challenges for Aerothermal Uncertainty Quantification

• Significant computational cost for high-fidelity aerothermal 
modeling
• Monte Carlo not feasible
Ø Utilize stochastic surrogates based on polynomial chaos 

• Need a non-intrusive approach so that the computational models 
(CFD) require no major modification
Ø Utilize non-intrusive polynomial chaos (NIPC) [3]

• Large number of uncertain variables
Ø Utilize effective global non-linear sensitivity analysis (Sobol 

indices calculated from PC expansion) for dimension 
reduction 

Ø Utilize Sparse Sampling NIPC [4,5]

• Mixed (aleatory + epistemic) uncertainty propagation 
Ø Utilize nested uncertainty propagation with PC surrogates [6]
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Stochastic response 
surface based on 
polynomial chaos 

expansion

Deterministic Component
(expansion coefficients)

Random Basis Functions 
(orthogonal polynomials)

(Ns x Nt ) (Nt x 1)(Ns x 1)
• the total number of output modes (terms in the expansion), Nt 

• Point-Collocation NIPC: Choose Ns samples to evaluate the deterministic model

: polynomial order of total expansion
: number of uncertain variables

Sensitivity and Uncertainty Quantification Approach
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• When Ns= Nt : minimum number of samples required to obtain a solution 
with the determined system (coefficient vector)

• When Ns > Nt : Overdetermined system (can define an over sampling ratio, 
OSR= Ns / Nt), solution obtained with Least-Squares approach 

• For Ns= Nt and Ns > Nt Computational cost (number of model evaluations) 
can be very high for large number of uncertain variables

• If Ns<Nt, the system is underdetermined (sparse sampling approach) but 
the most efficient in terms the computational cost 

• Seek a solution to the sparse system with the fewest number of non-
zero coefficients in the response surface using optimization:

• Incrementally update Ns until convergence achieved. Check 
convergence at iteration i with an error defined on Sobol indices: 

*
1 2

min   subject to  a a a dY - £

Sensitivity and Uncertainty Quantification Approach

where
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Mixed Uncertainty Propagation

• Double-loop sampling to generate a set of cumulative density functions (CDFs)
 
• Generates a probability or “P-box” representation of the mixed uncertainty output

• The bounds of a probability level or statistics (e.g., standard deviation) can be 
obtained by optimization or sampling over the epistemic variables 

• A stochastic response surface used in place of the deterministic code for 
computational efficiency

Total # of samples = (epistemic samples) x (aleatory samples)
          (each sample corresponds to a CFD simulation) 
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Stagnation Point Heat Flux Prediction in Hypersonic 
Flow with Uncertain Input

Velocity gradient  : Dissociation enthalpy :

Epistemic Uncertain Variables

Aleatory Uncertain Variables

Radiative-adiabatic wall BC:

Fay-Riddell Correlation (laminar boundary layer in 
thermo-chemical equilibrium, fully catalytic wall) : 

w
Free-stream

Blunt bodyBlunt body

Boundary layer

we

Shock Wave

Stagnation 
streamline
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Sparse-Sampling NIPC Results

• 11 uncertain variables, 2nd degree 
polynomial, Nt =78

• When Ns= 50, Sparse-Sampling NIPC 
results identical with Monte-Carlo 
(400,000 Samples) and NIPC with 
OSR=2 (156 samples)

Error Convergence

P-Box Comparison
Sobol Ranking
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Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

• Uses inflatable concentric toroids to 
deploy flexible-thermal protection 
system (f-TPS)
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Comparable 
Entry 

Masses 

Launch Vehicle Fairing Constraints 

• HIAD concept primarily being developed to address 
increased capability needed for landing higher mass at 
higher altitudes on Mars, eventually for human missions



Hypersonic flow 
modeling [7] Structural modeling [8]

Fluid-structure 
interaction (FSI)

Flexible TPS Modeling [9]

Material Thermal 
Response

Material Thermal 
Response

HIAD Modeling 
Uncertainties:
• Operating (freestream) Conditions
• Physics-based modeling 

parameters
− Thermochemistry
− Inflatable Structure 

Response
− F-TPS Response

(NASA)

UQ for Multidisciplinary HIAD Analysis & Design
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Objectives of the HIAD UQ Analysis

• Consider a 10m diameter HIAD for 
Ballistic Mars Entry

• Identify significant flow field and FSI 
uncertainty sources on surface 
quantities (aerodynamic heating, shear 
and pressure) for sensitivity and 
uncertainty analysis of F-TPS response

• Perform sensitivity and uncertainty 
analysis for F-TPS response
– Quantify the uncertainty in the 

bondline temperature of F-TPS 
layout
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Shock-Layer RANS Solution (CFD)
– NASA LAURA solver
– Two-temperature thermochemical non-equilibrium 

model by Park with 8-species Mars composition
– 1-D grid adaptation to resolve shock and 

boundary layer gradients
– Super-catalytic wall and fully turbulent boundary 

layer assumed for “most conservative” heating 
conditions

Thermal Response Model
– 1-D solid conduction, radiation, gas 

conduction, and advection heat transfer 
modeled through porous media

– Decomposition of the insulation material at 
elevated temperatures

– Thermal properties of each material layer and 
gas determined from experimental 
measurements

F-TPS Thermal Model
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Computational Model for F-TPS Analysis
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Temperature 
response 
between 
material 
layups at P2

• Critical bondline temperature at 3 locations

Baseline Results with No Uncertainty
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• Significant aero-heating uncertainty sources 
determined from the sensitivity analysis of 
hypersonic flow field (out of 59 variables)

• F-TPS thermal model uncertain variables 
introduced for the material thermal properties, 
layer thicknesses, and decomposition 
phenomena

Insulator 1 (IN1)

Insulator 2 (IN2)
Gas Barrier (GB)

Uncertainty Sources for F-TPS Response Analysis

Outer fabric (OF)
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• Greatest uncertainty occurs just prior to HIAD 
separation at 70 seconds – transition to secondary 
descent technology

• 125% above and 75% below the nominal 
bondline temperature values

• Increase in bondline temperature uncertainty beyond 
40 sec due to thermal gradients in outer fabric and 
insulator 1 layers; freestream density at lower 
altitudes near peak deceleration

F-TPS Bondline Temperature Uncertainty and Sensitivity 

Upper Limit for the 
bondline temperature 
exceeded at 65 seconds

1

2

3

16Copyright by S. Hosder, April 23, 2025, DATAWorks 2025



Conclusions

• Outlined a framework for flight uncertainty prediction of 
hypersonic entry vehicles

 
• Described efficient aerothermal uncertainty quantification with 

stochastic expansions 

• Demonstrated the uncertainty quantification approach on 
thermal protection system response of an HIAD for Mars entry

• Integrating uncertainty quantification to entry vehicle 
development (e.g., HIAD) early in the design process also 
important for timely changes in vehicle configuration, TPS 
selection/sizing, increasing robustness, and resource 
allocation for ground and flight testing
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