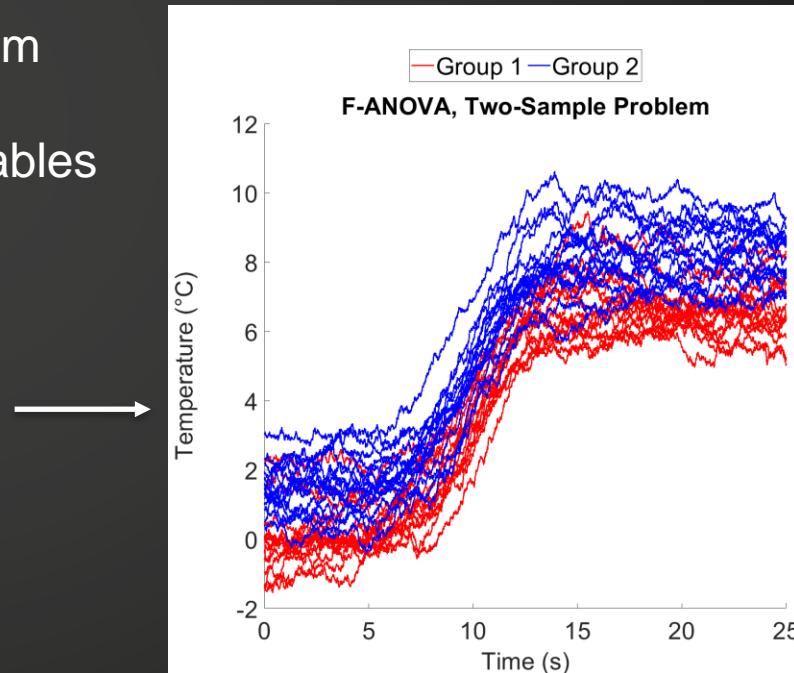


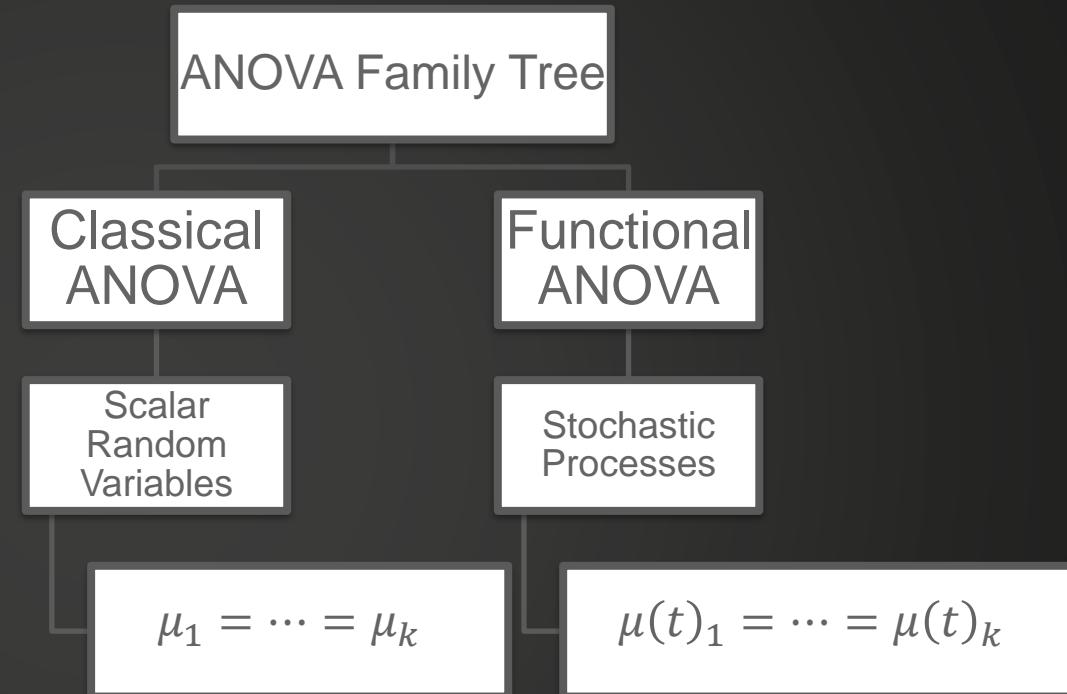
Functional Analysis of Variance (F-ANOVA): Tutorial

Grouping Data and Identifying
Interactions Across Arbitrary Domains



Adam C Watts

April 24, 2025


ANOVA and Stochastic Processes

- Classical ANOVA (Analysis of Variance) is used for testing whether there are significant differences among the means of a scalar random variable measured across multiple groups
 - Compares the variability between groups to the variability within groups.
- Many natural processes are *not* scalar random variables
 - They consist of a collection of random variables (stochastic process: $SP(\mu, \gamma)$)
 - Over a domain of interest: $\mathcal{T} = [t_0, t_f]$.
- Examples
 - Temperature measurements over time
 - Growth measurements over time
 - Shock response over frequencies

Functional-Analysis of Variance (F-ANOVA)

- Functional-ANOVA works on stochastic processes
- Global test, compared to a pointwise test
- For convenience, assume domain is over time, $t \in \mathcal{T}$
- F-ANOVA is used for testing whether there are significant differences among the mean functions of stochastic processes over some domain measured across multiple groups

F-ANOVA in Practice vs Theory

- F-ANOVA is based on functions, but all the samples we collect are vectors
- Numerical implementations of F-ANOVA are based on vectors
- The i^{th} functional samples are discretized accordingly:

$$y_i \stackrel{i.i.d}{\sim} \text{SP}(\mu(t), \gamma(t, s))$$

$$y_i(t) \rightarrow \mathbf{y}_i = [y_i(t_1), y_i(t_2), \dots, y_i(t_M)]$$

- Where t_1, t_2, \dots, t_M are discretized time points in our domain
- In practice:
 - The mean functions, $\mu_1(t)$, are instead mean vectors, μ_1
 - The covariance function, $\gamma(t, s)$, is instead a covariance matrix, Σ

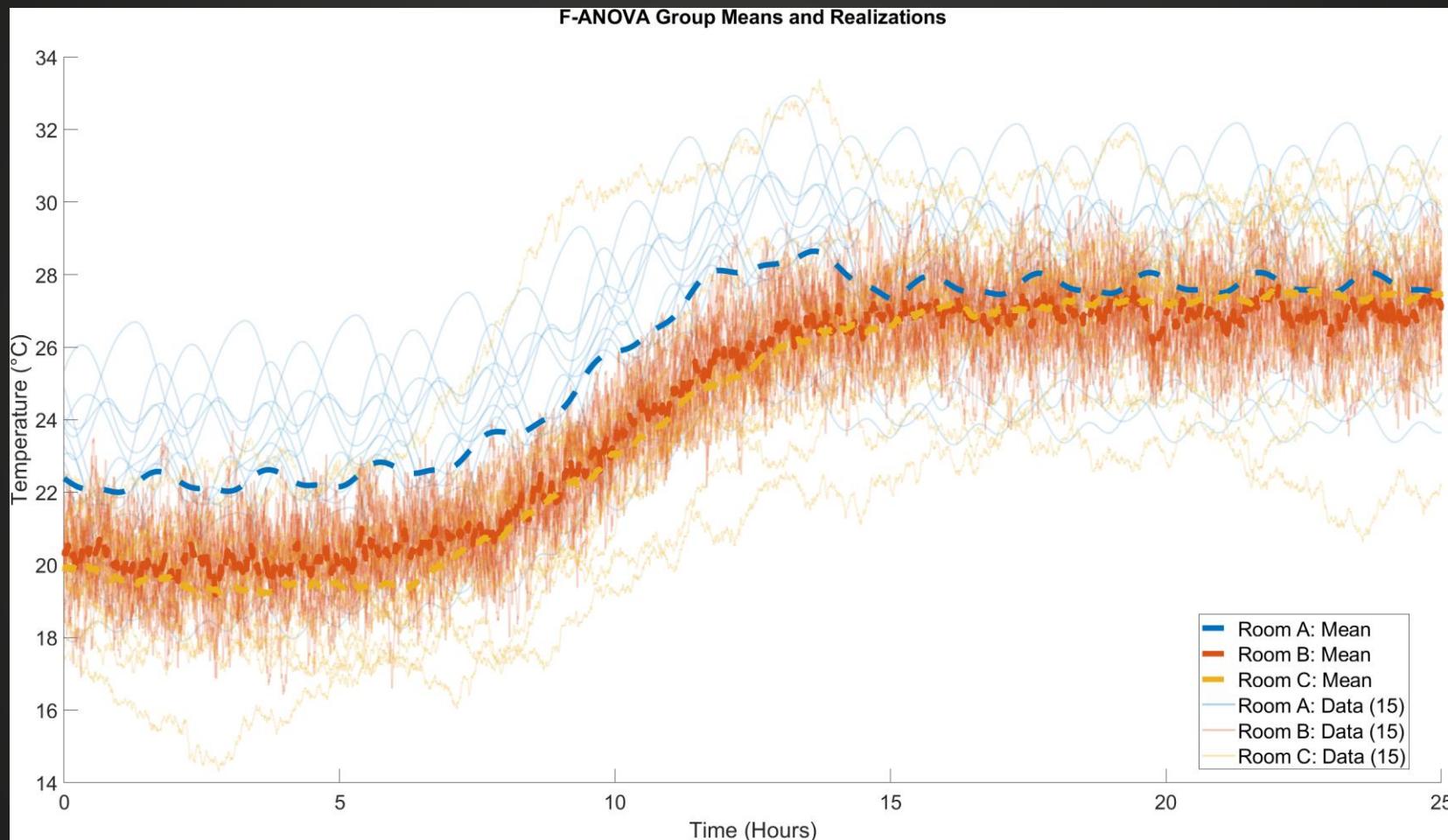
Data Preprocessing For F-ANOVA

1. Data is sampled over a common domain
 - Just consistent between all realizations
(Uniformly or nonuniformly sampled)
2. Can be a stationary or a non-stationary stochastic process
3. Resolution of each sample is sufficiently long
 - Best practice is 1000 discretized elements per realization [1]
4. If the data doesn't meet these requirements, functionalize it using a reconstruction method.
 - Kernel Smoothing
 - Splines

Trivial Example

- Suppose we collect room temperature data from 3 different rooms over the course of 25 hours.
- 15 samples collected from each room

$$\mathbf{y}_{1:15, A}(t), \quad \mathbf{y}_{1:15, B}(t), \quad \mathbf{y}_{1:15, C}(t)$$


- 1 Factor (rooms) with 3 levels/groups (Rooms A, B, and C)
- Each group has a different covariance function
- Data is sampled uniformly, but more importantly, consistent across the domain

$$\Delta t = \frac{25}{3000}, \quad \mathcal{T} = [0, 25]$$

- Each realization has $M = 3000$ elements.

**Do the mean temperatures statistically differ across the three rooms?
If so, which ones?**

Example Data Plotted

How does F-ANOVA Work?

Central Limit Theorem of IID stochastic processes

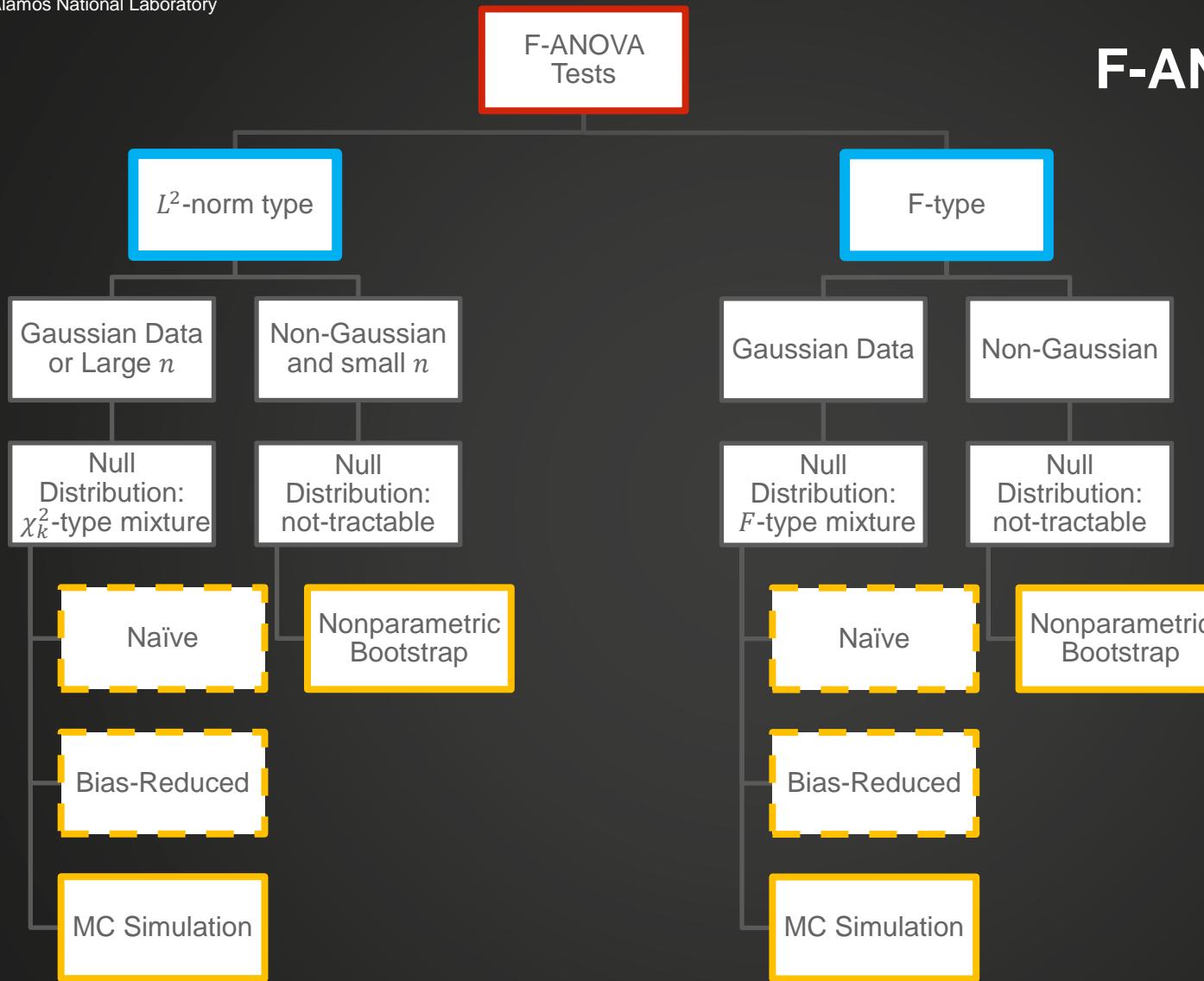
- The test statistics throughout F-ANOVA are distributed as zero mean Gaussian processes: $GP(0, \gamma)$
- Even when the Gaussian assumption of the data is not satisfied
 - The difference between the sample mean and actual mean function converges in distribution to a zero mean GP when N is large.

$$\sqrt{N}\{\bar{y}(t) - \mu(t)\} \xrightarrow{d} GP(0, \gamma)$$

- From this, it can be shown that, the difference between group mean functions converges in distribution to a zero mean gaussian process under the null hypothesis

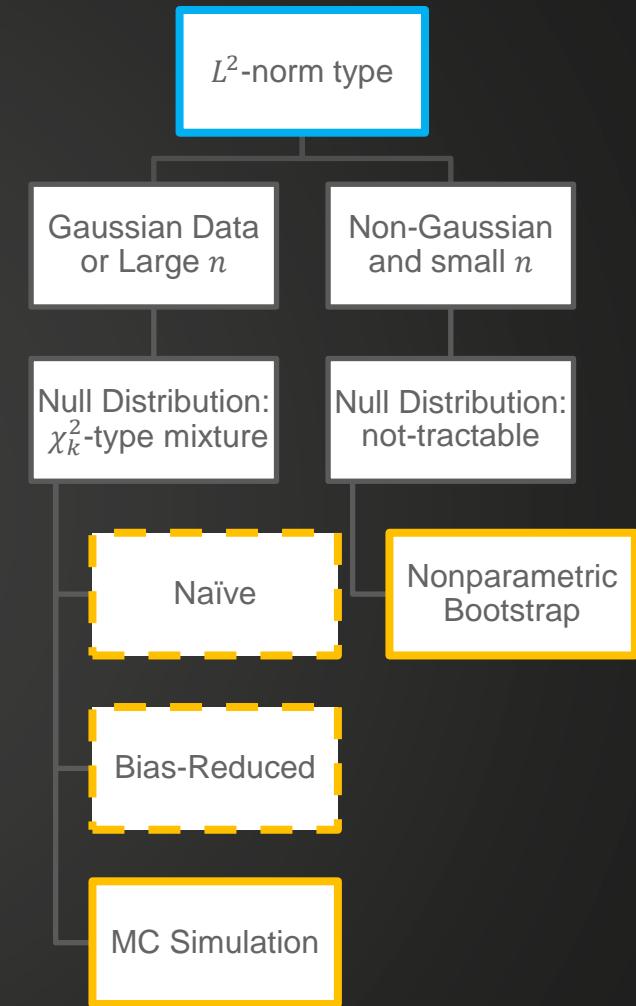
Why do we care?

How does F-ANOVA Work?

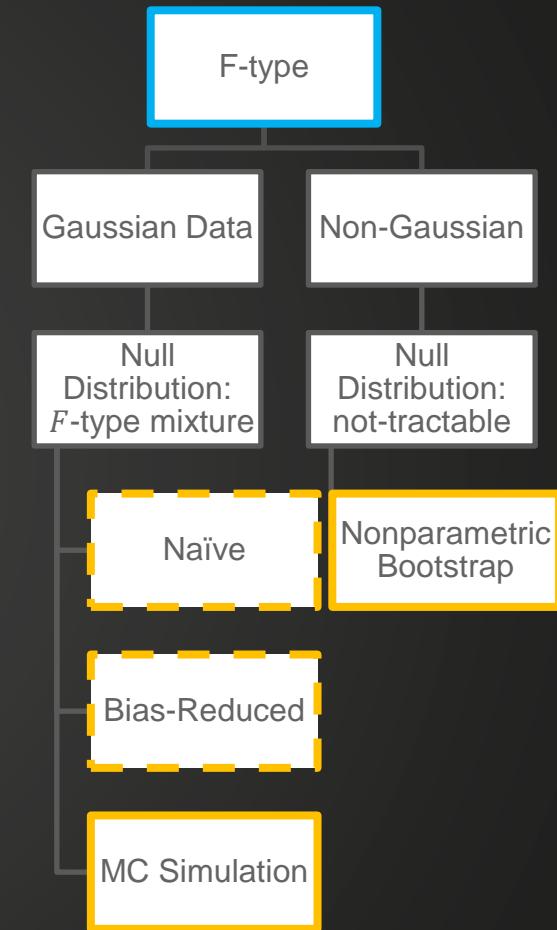

- The squared L²-norm of a zero mean Gaussian process is a χ_k^2 -type mixture:

$$\|y(t)\|^2 \stackrel{d}{=} \sum_{r=1}^m \lambda_r A_r$$

$$y(t) \sim \text{GP}(0, \gamma) \text{ and } A_r \stackrel{i.i.d.}{\sim} \chi_k^2$$


- All the F-ANOVA methods are based around this χ_k^2 -type mixture distribution because its serves as our null distribution.
 - Approximations using naïve or biased-reduced cumulant matching
 - Direction simulation
 - Compute a test statistic from the data and compare it to its null distribution to see how probable that statistic is under the null hypothesis.

F-ANOVA Tests

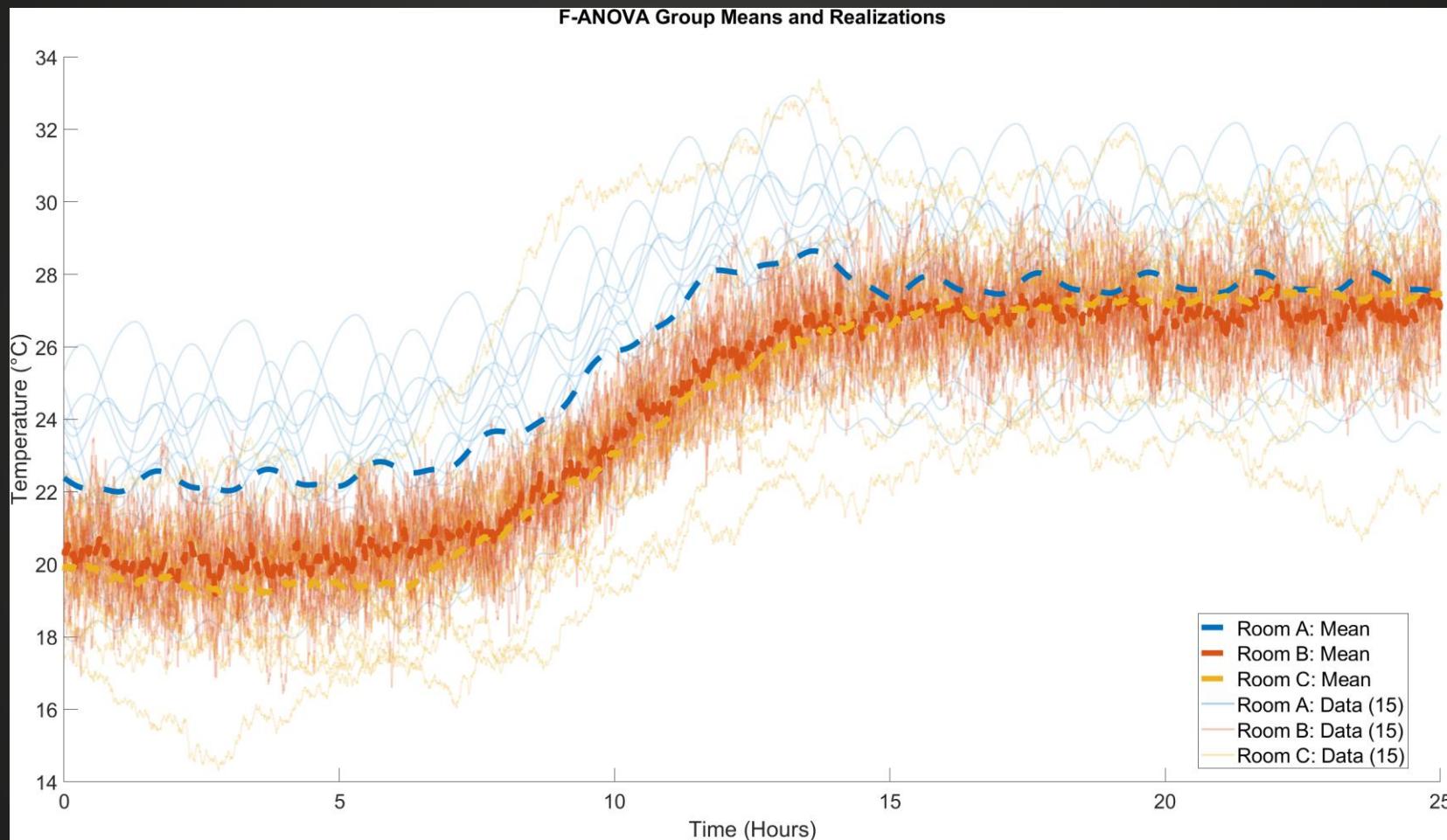

F-ANOVA Tests: L^2 -norm type test

- Gaussian or large sample sizes:
 - Null distribution: χ_k^2 -type mixture
 - Naïve and biased-reduced are approximations to the null distribution
 - Monte Carlo (MC) simulation of null distribution ($b = 10000$)
 - Estimate the PDF using a kernel density estimate (KDE)
- Non-Gaussian and small n
 - Bootstrap the critical values, resulting in a L^2 -norm bootstrap test
 - Bootstrapping the data and calculating a bootstrap test statistic from each bootstrap resample
 - Estimate the $100(1 - \alpha)$ -percentile for the test statistic for the given data

F-ANOVA Tests: *F*-type test

- Gaussian Assumption
 - Partially takes the variations of $\hat{\gamma}(t, s)$ into account
 - Normalization factor to the L^2 -norm type tests using the trace($\hat{\gamma}(t, s)$)
 - Scale invariant, multiply the data by a non-zero constant, doesn't change the test-statistic
 - Expected to outperform L^2 -norm type test
 - Null distribution: *F*-type mixture
 - Either approximate or MC simulate this distribution
- Non-Gaussian
 - Bootstrap the critical values, resulting in a *F*-type bootstrap

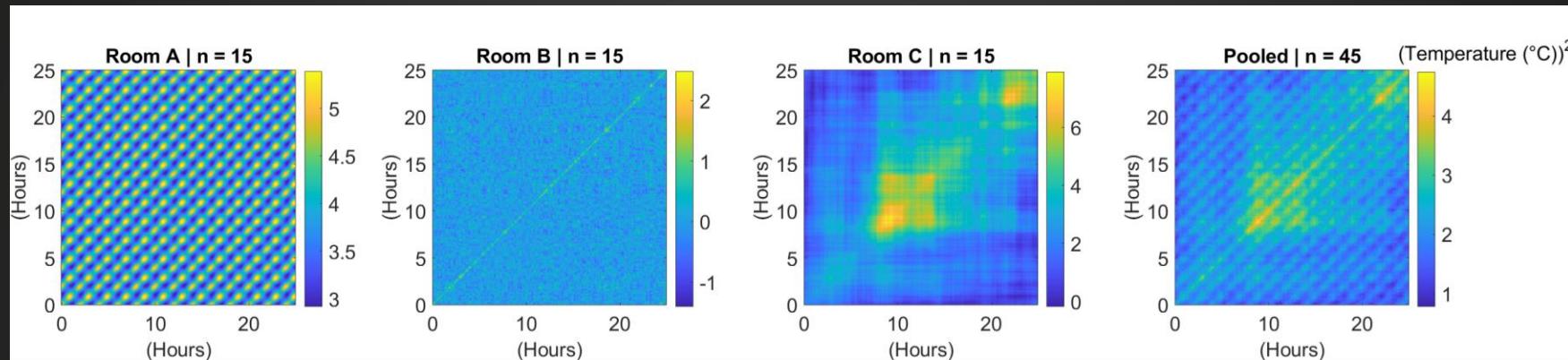
What test should I use?


- The nonparametric L^2 –norm and F -type bootstrap tests are preferred
 - Robust and require the least number of assumptions (such as being Gaussian)
 - They can still struggle with very low sample sizes, $n \lesssim 7$
- Cumulant matching and direction MC simulations are fast
 - Doesn't hurt to include them
 - Comparing p-values from various tests allows one to see what assumptions hold and which do not

n	Unique Bootstrap Resamples
4	35
5	126
6	462
7	1,716
8	6,435
9	24,310
10	92,378

Variants of F-ANOVA: Heteroscedastic

- The heteroscedastic F-ANOVA variant doesn't pool the covariances
- Requires modifications to the L^2 -norm and F -type test null distributions or test statistics compared the ones used in the homoscedastic case
- Check equality of covariances to pick which F-ANOVA variant to use
 - Or, run both heteroscedastic and homoscedastic F-ANOVAs
 - If homoscedastic:
 - Both variants will provide similar p-values.
 - The homoscedastic F-ANOVA variant is expected to have greater statistical power


Example Data Again

Ideal Workflow

1. Data Preprocessing (if needed)
 - Sampled over a common domain
 - ~1000 elements per sample Plot Data
2. Pick Statistical Significance ($\alpha = 0.05$)
3. Check Assumptions (Heteroscedastic or Homoscedastic)
 - Visual Check
 - Statistical Test for the Equality of Covariances
4. Run Appropriate F-ANOVA variations
5. Post-Hoc test

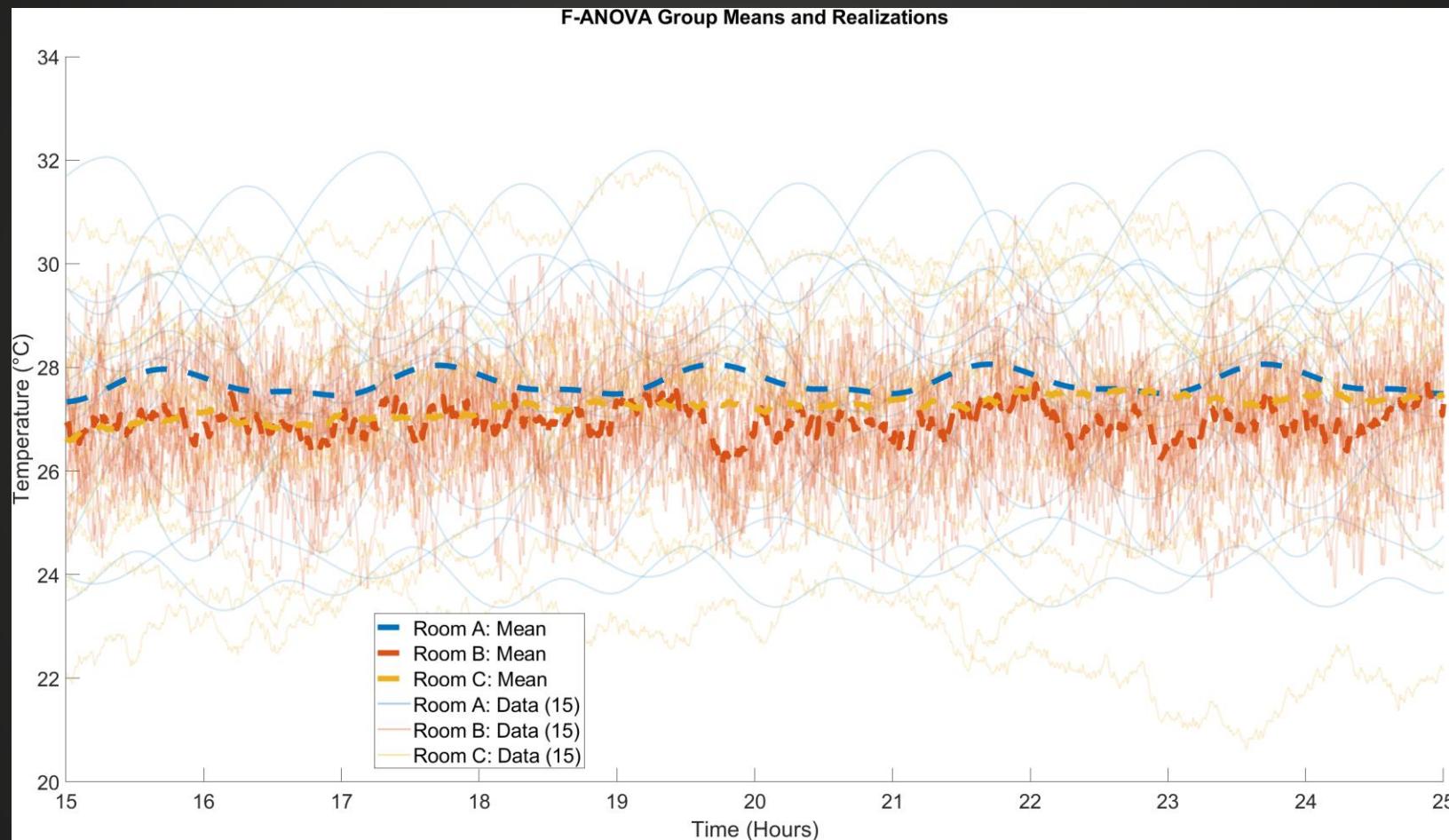
Check Assumptions (Heteroscedastic or Homoscedastic)

Method	P-Value	Verdict
L2-Simul	0.02844	Reject Null Hypothesis for Alternative Hypothesis
L2-Naive	0.00086	Reject Null Hypothesis for Alternative Hypothesis
L2-Bias Reduced	0.00059	Reject Null Hypothesis for Alternative Hypothesis
Permutation-Test	0.01560	Reject Null Hypothesis for Alternative Hypothesis
Bootstrap-Test	0.02670	Reject Null Hypothesis for Alternative Hypothesis

Run F-ANOVA (Heteroscedastic)

Family-Wise Method	Test-Statistic	P-Value	Verdict
L2-Simul	116667.5466	0.00018	Reject Null Hypothesis for Alternative Hypothesis
L2-Naive	116667.5466	0.00032	Reject Null Hypothesis for Alternative Hypothesis
L2-BiasReduced	116667.5466	0.00005	Reject Null Hypothesis for Alternative Hypothesis
L2-Bootstrap	116667.5466	0.00060	Reject Null Hypothesis for Alternative Hypothesis
F-Simul	5.6473724	0.00083	Reject Null Hypothesis for Alternative Hypothesis
F-Naive	5.6473724	0.00032	Reject Null Hypothesis for Alternative Hypothesis
F-Bias Reduced	5.6473724	0.00007	Reject Null Hypothesis for Alternative Hypothesis
F-Bootstrap	5.6473724	0.00250	Reject Null Hypothesis for Alternative Hypothesis

*For this example, the homoscedastic and heteroscedastic F-ANOVA variants provided very similar P-Values


Post-Hoc Test: Pair-Wise Heteroscedastic F-ANOVA

Which Room(s) are statistically different from each other?

Hypothesis	L2-Simul	L2-Naive	L2-Bias Reduced	L2-Bootstrap	F-Simul	F-Naive	F-Bias Reduced	F-Bootstrap
Room A & Room B	0.00065	0.00027	0.00003	0.00030	0.00198	0.00027	0.00006	0.00360
Room A & Room C	0.00217	0.00106	0.00044	0.00100	0.00362	0.00106	0.00058	0.00410
Room B & Room C	0.50303	0.53021	0.55530	0.45900	0.51839	0.53024	0.57365	0.52880

- Room A statistically differs compared to Room B and Room C
- However, we fail to do so for Room B and Room C

What if we subset from 15 hours to 25 hours?

Run F-ANOVA (Heteroscedastic)

Family-Wise Method	Test-Statistic	P-Value	Verdict
L2-Simul	6851.3198	0.4799	Fail to Reject Null Hypothesis
L2-Naive	6851.3198	0.4801	Fail to Reject Null Hypothesis
L2-BiasReduced	6851.3198	0.4852	Fail to Reject Null Hypothesis
L2-Bootstrap	6851.3198	0.4167	Fail to Reject Null Hypothesis
F-Simul	0.8171	0.4872	Fail to Reject Null Hypothesis
F-Naive	0.8171	0.4801	Fail to Reject Null Hypothesis
F-BiasReduced	0.8171	0.5020	Fail to Reject Null Hypothesis
F-Bootstrap	0.8171	0.4589	Fail to Reject Null Hypothesis

- We don't have enough evidence to state that the room mean temperatures are statistically different from each other

Variants of F-ANOVA: Two-Way

F-ANOVA, just like traditional ANOVA, can be performed One-Way or Two-Way

- One-Way: whether the mean functional response differs across multiple *levels or groups* of a single factor.
 - Factor = Temperature
 - Levels = {30, 60, 100}°F
- Two-way: whether the mean functional response differs *jointly* across levels of *two* factors, and can also test for **interaction** between those factors
 - Factors = {Temperature, Humidity}
 - Levels = {30, 60, 100}°F and {10, 90}%
 - Interaction: temperature 100°F and 10% humidity

Differences between Existing F-ANOVA Libraries

Features	Library Name	
	fdANOVA	LANL's f-ANOVA
<i>Programming Language</i>	R	MATLAB
<i>F-ANOVA Methods</i>	<ul style="list-style-type: none"> ▪ Basis-function Representation ▪ Random Projections ▪ L^2-norm and F-test <ul style="list-style-type: none"> ▪ Naïve ▪ Bias-reduced ▪ Nonparametric Bootstrap ▪ Nonparametric Bootstrap 	<ul style="list-style-type: none"> ▪ L^2-norm and F-test ▪ Naïve ▪ Bias-reduced ▪ Nonparametric Bootstrap ▪ MC Simulation
<i>Data Types</i>	Univariate and Multivariate	Univariate
<i>Heteroscedastic Support</i>	Just one (L^2 -norm parametric bootstrap)	All methods
<i>Design</i>	One-Way	One-Way and Two-Way
<i>Post-hoc / Pairwise Tests</i>	Not Included	Easy pairwise comparisons between factor levels
<i>Equality of Covariance Testing</i>	Not Included	Visual and statistical tests

Key Take Aways

- F-ANOVA works over a variety of scientific fields.
 - If your data can be sampled over a common domain, you can utilize F-ANOVA methods
- Provide sufficient resolution for each sample
 - ~1000 elements per sample of your functional data.
- F-ANOVA can support:
 - Heteroscedastic or homoscedastic data
(pick the right F-ANOVA based on your data)
 - Data that does not originate from a Gaussian process.
 - One-way and Two-way analyses
 - Low sample sizes, bootstrap options exist.

Thank You

Convergence of test statistic

- Convergence of the test statistic is not trivial
- Depends on
 - Covariance function
 - Sample size
 - Smoothing of Data (Post-Processing)
- Safe assumption is to discretize data to at least 1000 elements

Benefits of reconstruction

- Evaluate at any desired resolution over the domain, \mathcal{D} [1]
- Remove measurement errors/noise so the variance arises from the between-subject variation
- Convergence of test statistic requires sufficiently large enough resolution
 ~ 1000 elements per realization