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Gaussian Process Models

» Gaussian Process Models are a broad family of nonparametric methods
within the broader family of kernel methods. GPs embed optimal
reconstruction methods in a statistical context that allow one to reason
quantitatively and consistently about model error.

> A Gaussian process may be thought of (informally) as an infinite-dimensional
multivariate normal distribution over a space of functions.

» Just as a MVN is entirely characterized by its mean vector and a
symmetric-positive-definite covariance matrix, a GP over a space Q (e.g RV)
is characterized by a mean function ;(x) and by a symmetric-positive-definite
covariance kernel K(x, x').

» The choice of K(-, ) is in effect the choice of the space of functions that is
sampled by the GP. It controls function properties such as continuity, order of
differentiability, periodicity, scale, etc.

P
(ZENERGY

Argonne & |75




Why Are GPs Useful?

» GPs can be trained on noisy observations, to estimate hyperparameters
embedded in u(x) and K(x, x’).

» More importantly, GPs can make posterior predictions of function values at
points x* that have not yet been observed/acquired.

» These are inherently probabilistic predictions. They are embody not only an
interpolation, but also the uncertainty in that interpolation.
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With a finite-dimensional MVN, evaluation/observation of some variables leads to
a more informative conditional distribution over the remaining variables.
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Similarly, observations of values of a function governed by a GP (or of any linear
functional of such a function) results in an updated conditional mean function and
covariance kernel, making probabilistic predictions in the rest of the space.
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GP Applications

» The ability to make probabilistic predictions about model properties have
made GPs a very popular tool for many data analysis/UQ applications:

» Image reconstruction;
» Surrogate modeling;
» QOutput emulators for expensive simulators;
» Black-box function optimization;
» Optimal experimental design.
» However, while the predictive uncertainty output by a GP seems valuable, it is

often difficult to say precisely what it means. What is the calibration statement
of a GP model’s 90% (say) predictive credible regions?
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What is that functional (co-)variance thing, anyway? What is it good for?
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Motivating Example: Targeted Adaptive Design

» Targeted Adaptive Design (Graziani & Ngom, SIAM/ASA JUQ 2024,
arxiv.org/2205.14208) is a target optimization algorithm for discovering
settings x of some complex experiment that result in a desired set of output
features F, within some tolerances, when the response f(x) is not known a
priori, and must be determined by expensive experiments or simulations.
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» TAD replaces the unknown
response with a vector-valued

+ Target

| I M v | GP surrogate model.

@ Initial 2-sample

' ) * > It optimizes an acquisition
function over a cloud of probe
(“2”) points and a single target

L e point, looking for a location
’ ‘ where the GP surrogate
; ‘ e predictive distribution at the
1 4" . target has an uncertainty that
L 8 fits within the tolerance box.

> At the end of each iteration, it

acquires the function value at
o i T e e e the optimal probe and target
points.
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» Early versions of TAD suffered from convergence failures.

» The aquisition function, E,(fr = F|f;, X1, f2, X2) would at first increase in the
direction of the solution, but eventually start leading away from it.

» An investigation showed that the model was making very bad probabilistic
predictions of f(x) near the optimization solutions. The aquired data £ did not
look like plausible samples from the GP predictive distribution.

» The Mahalanobis distance x? = (f, — [,LQ,pred)TKp_r;d(fg — M2 pred) should have

been distributed as x? with DOF=Dim(#). It was not.

» By monitoring x2, and adding flexibility to the covariance every time it reached
implausible values, we obtained a convergent algorithm.
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Methods For Kernel Model Validation

> The Mahalanobis x? seems like a useful tool for determining whether the
covariance kernel and the data are on speaking terms, if one has either a
prediction/acquisition cycle or else data held out from training.

> What else could one do? Let’s do some experiments.
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o » Blue line: a random function,
sampled from a zero-mean GP
+1 with a Matern(v = 1.5) covariance.
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 erucion ; » Regression fit using GP model with
squared-exponential covariance.
The random functions assumed by
the model are C>*°—very smooth.

4 Training Data

» The band is a 2-sigma credible
region on the function value.

» The kernel model is seriously
mis-specified.

» The mean prediction looks OK,
though...
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» The 80 yellow points are data
sampled from the true model, with
the same additive noise as the
training data, but held out from
training.

» The Mahalanobis x? for the
held-out data is x? = 129 for
DOF=80, a P — value of
4.3 x 1074,

4 .,"" » Clearly, the predictive uncertainties
are quite wrong with this model.
R R They would be worthless for UQ.

P—
(2 ENERGY




What About Extrapolation?

» The 80 yellow points are again
e . data sampled from the true model,
estin 1 Crtos e with the same additive noise as
! e o \ the training data. They all have
R x > 1, so they are outside the
: \ support of the training data.

» The Mahalanobis y? for the
held-out data is x? = 141 for
DOF=80, a P — value of
2.7 x 1075,

» So any UQ-bearing extrapolation
using this model would also be
worthless.
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Exploring Fine-Grained Model Deviations

» The N held-out data points yielded a single measure, x2, which can indicate a
problem, but is a coarse summary.

> A “good” x? (P-value a reasonable sample from U(0, 1)) might still conceal a
bad model, if anomalously large residuals are compensated by anomalously
small ones.

» By diagonalizing the predictive covariance, K.y, we can access individual
standard normal residuals:

O" KpregO = diag(o%,...,0%) ; d=0"(Y — ppreq) = 0k ~ N(0,0%).

» The d are |ID. Their CDFs should be 11D U(0, 1), if the model is good.




Ry » These are the IID cumulative
probabilities corresponding the
earlier 80 testing points.

> A likelihood fit of a Beta
distribution density
(m5(p; &, b) o< pa~1(1 — p)P~T)
yields a best-fit model with “horns”
nearp=0and p=1.

» There is an excess of both
too-small and too-large residuals!

PVale
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Posterior Density

a=1, b=1 (uniform Dist.)
@ Best-Fit Beta Distribution

» This is a Bayesian posterior over
the Beta distribution parameters a,
15.0 b

» Thevalues a= 1, b= 1 that
correspond to a U(0, 1) distribution
are very unlikely in the posterior:

the iso-posterior contour that

crosses this point contains a

probability P =1 —1.3 x 1074,
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Let’s Try With A Better Model

» This is the posterior predictive
from a GP model with a
Matern(v = 2.5) covariance
kernel.

» Note that this model is still
somewhat mis-specified, since it
samples C? functions instead of
C' functions.

\ / b » But it seems to be doing better
i e than the squared-exponential
. RN model on the held-out data:
W x? = 85.8 for DOF=80, which
O gives a respectable P-value of
0.307.
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Best-fit Beta Distribution: i i
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The residual analysis confirms that this model makes trustworthy probabilistic
predictions, despite its known misspecification.
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Higher Dimensions

» 1-D scalar function domains are relatively simple to model.

» With higher-dimensional input and/or output, covariance kernel choices
embrace not only kernel functional form, but also spatial correlation among
dimensions.

» Factored covariances, isotropic covariances etc. are often very bad at
modeling real data (e.g. the TAD example).

» The methodologies presented here can still serve as a guide to model
(in-)adequacy in such cases.
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Summary

> |t is in fact possible to ascribe quantitative meaning to GP predictive credible
regions. The key is testing with data held out from training.

» This is hardly ever done in literature: generally mean-squared error is felt to
be an reasonable measure of model adequacy. It isn'’t.

» GPs furnish probabilistic predictions, not just predictive means. If these
distribution are wrong, the UQ consequences cannot be trusted. This can be
verified.

» GP practitioners should always verify their predictive distributions.
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