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Gaussian Process Models

▶ Gaussian Process Models are a broad family of nonparametric methods
within the broader family of kernel methods. GPs embed optimal
reconstruction methods in a statistical context that allow one to reason
quantitatively and consistently about model error.

▶ A Gaussian process may be thought of (informally) as an infinite-dimensional
multivariate normal distribution over a space of functions.

▶ Just as a MVN is entirely characterized by its mean vector and a
symmetric-positive-definite covariance matrix, a GP over a space Ω (e.g RN )
is characterized by a mean function µ(x) and by a symmetric-positive-definite
covariance kernel K (x ,x ′).

▶ The choice of K (·, ·) is in effect the choice of the space of functions that is
sampled by the GP. It controls function properties such as continuity, order of
differentiability, periodicity, scale, etc.



Why Are GPs Useful?

▶ GPs can be trained on noisy observations, to estimate hyperparameters
embedded in µ(x) and K (x ,x ′).

▶ More importantly, GPs can make posterior predictions of function values at
points x∗ that have not yet been observed/acquired.

▶ These are inherently probabilistic predictions. They are embody not only an
interpolation, but also the uncertainty in that interpolation.



With a finite-dimensional MVN, evaluation/observation of some variables leads to
a more informative conditional distribution over the remaining variables.



Similarly, observations of values of a function governed by a GP (or of any linear
functional of such a function) results in an updated conditional mean function and
covariance kernel, making probabilistic predictions in the rest of the space.



GP Applications

▶ The ability to make probabilistic predictions about model properties have
made GPs a very popular tool for many data analysis/UQ applications:
▶ Image reconstruction;
▶ Surrogate modeling;
▶ Output emulators for expensive simulators;
▶ Black-box function optimization;
▶ Optimal experimental design.

▶ However, while the predictive uncertainty output by a GP seems valuable, it is
often difficult to say precisely what it means. What is the calibration statement
of a GP model’s 90% (say) predictive credible regions?



What is that functional (co-)variance thing, anyway? What is it good for?



Motivating Example: Targeted Adaptive Design

▶ Targeted Adaptive Design (Graziani & Ngom, SIAM/ASA JUQ 2024,
arxiv.org/2205.14208) is a target optimization algorithm for discovering
settings x of some complex experiment that result in a desired set of output
features F , within some tolerances, when the response f (x) is not known a
priori, and must be determined by expensive experiments or simulations.
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▶ TAD replaces the unknown
response with a vector-valued
GP surrogate model.

▶ It optimizes an acquisition
function over a cloud of probe
(“2”) points and a single target
point, looking for a location
where the GP surrogate
predictive distribution at the
target has an uncertainty that
fits within the tolerance box.

▶ At the end of each iteration, it
acquires the function value at
the optimal probe and target
points.



▶ Early versions of TAD suffered from convergence failures.

▶ The aquisition function, Ef2(fT = F |f1,x1, f2,x2) would at first increase in the
direction of the solution, but eventually start leading away from it.

▶ An investigation showed that the model was making very bad probabilistic
predictions of f (x) near the optimization solutions. The aquired data f2 did not
look like plausible samples from the GP predictive distribution.

▶ The Mahalanobis distance χ2 = (f2 − µ2,pred)
⊤K−1

pred(f2 − µ2,pred) should have
been distributed as χ2 with DOF=Dim(f2). It was not.

▶ By monitoring χ2, and adding flexibility to the covariance every time it reached
implausible values, we obtained a convergent algorithm.
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Methods For Kernel Model Validation

▶ The Mahalanobis χ2 seems like a useful tool for determining whether the
covariance kernel and the data are on speaking terms, if one has either a
prediction/acquisition cycle or else data held out from training.

▶ What else could one do? Let’s do some experiments.



▶ Blue line: a random function,
sampled from a zero-mean GP
with a Matern(ν = 1.5) covariance.
This is a sample from a space of
C1 (once-differentiable)
functions—quite rough.

▶ Red points: random data values
sampled from the function at
points x < 1, with added noise.



▶ Regression fit using GP model with
squared-exponential covariance.
The random functions assumed by
the model are C∞—very smooth.

▶ The band is a 2-sigma credible
region on the function value.

▶ The kernel model is seriously
mis-specified.

▶ The mean prediction looks OK,
though...



▶ The 80 yellow points are data
sampled from the true model, with
the same additive noise as the
training data, but held out from
training.

▶ The Mahalanobis χ2 for the
held-out data is χ2 = 129 for
DOF=80, a P − value of
4.3 × 10−4.

▶ Clearly, the predictive uncertainties
are quite wrong with this model.
They would be worthless for UQ.



What About Extrapolation?

▶ The 80 yellow points are again
data sampled from the true model,
with the same additive noise as
the training data. They all have
x > 1, so they are outside the
support of the training data.

▶ The Mahalanobis χ2 for the
held-out data is χ2 = 141 for
DOF=80, a P − value of
2.7 × 10−5.

▶ So any UQ-bearing extrapolation
using this model would also be
worthless.



Exploring Fine-Grained Model Deviations

▶ The N held-out data points yielded a single measure, χ2, which can indicate a
problem, but is a coarse summary.

▶ A “good” χ2 (P-value a reasonable sample from U(0,1)) might still conceal a
bad model, if anomalously large residuals are compensated by anomalously
small ones.

▶ By diagonalizing the predictive covariance, Kpred , we can access individual
standard normal residuals:

O⊤KpredO = diag(σ2
1, . . . , σ

2
N) ; d ≡ O⊤(y − µpred) =⇒ dk ∼ N (0, σk ).

▶ The dk are IID. Their CDFs should be IID U(0,1), if the model is good.



▶ These are the IID cumulative
probabilities corresponding the
earlier 80 testing points.

▶ A likelihood fit of a Beta
distribution density
(πβ(p;a,b) ∝ pa−1(1 − p)b−1)
yields a best-fit model with “horns”
near p = 0 and p = 1.

▶ There is an excess of both
too-small and too-large residuals!



▶ This is a Bayesian posterior over
the Beta distribution parameters a,
b.

▶ The values a = 1, b = 1 that
correspond to a U(0,1) distribution
are very unlikely in the posterior:
the iso-posterior contour that
crosses this point contains a
probability P = 1 − 1.3 × 10−4.



Let’s Try With A Better Model
▶ This is the posterior predictive

from a GP model with a
Matern(ν = 2.5) covariance
kernel.

▶ Note that this model is still
somewhat mis-specified, since it
samples C2 functions instead of
C1 functions.

▶ But it seems to be doing better
than the squared-exponential
model on the held-out data:
χ2 = 85.8 for DOF=80, which
gives a respectable P-value of
0.307.



The residual analysis confirms that this model makes trustworthy probabilistic
predictions, despite its known misspecification.



Higher Dimensions

▶ 1-D scalar function domains are relatively simple to model.

▶ With higher-dimensional input and/or output, covariance kernel choices
embrace not only kernel functional form, but also spatial correlation among
dimensions.

▶ Factored covariances, isotropic covariances etc. are often very bad at
modeling real data (e.g. the TAD example).

▶ The methodologies presented here can still serve as a guide to model
(in-)adequacy in such cases.



Summary

▶ It is in fact possible to ascribe quantitative meaning to GP predictive credible
regions. The key is testing with data held out from training.

▶ This is hardly ever done in literature: generally mean-squared error is felt to
be an reasonable measure of model adequacy. It isn’t.

▶ GPs furnish probabilistic predictions, not just predictive means. If these
distribution are wrong, the UQ consequences cannot be trusted. This can be
verified.

▶ GP practitioners should always verify their predictive distributions.


