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SINGLE LABEL CLASSIFICATION

Task: Classify these pictures into dog, squirrel, cat, or owl.
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MULTI-LABEL CLASSIFICATION

Task: Identify all the animals in the pictures.
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MULTI-LABEL CLASSIFICATION

Task: Identify all the animals in the pictures.
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19 METRICS TO EVALUATE MULTI-LABEL CLASSIFICATION
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19 METRICS TO EVALUATE MULTI-LABEL CLASSIFICATION

Multi-Label
Classification
Metrics

Example-Based

Label-Based

Classification

Ranking

Classification

Ranking

Hamming Loss
Subset Accuracy
Accuracy
Precision
Recall
F-Measure

One-Error
Coverage
Ranking-Loss
Average Precision
Example AUC

Micro/Macro:
Accuracy
Precision

Recall
F-Measure

Micro/Macro:
AUC
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IF I'M BUILDING A MULTI-LABEL CLASSIFICATION MODEL...

JHEN A METRIC BECOMES A TARGET,

- | want to make modeling choices that result in the IT CEASES TO BE A GOOD METRIC.

best performing model SOUNDS BAD. LET'S OFFER

: , , A BONUS To ANYONE WHD

 “Best performing” can mean different things IDENTIFIES A METRIC THAT
. . HAS BECOME A TARGET.
« Which of the 19 metrics do you choose??? B ) b

= Surely not all of them contain unique
information

= |ts not immediately clear which aspects of
model performance they might be evaluating

XKCD.com: Goodhart's Law
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GOALS FOR EVALUATING METRICS

Select a parsimonious set to evaluate
performance overall

e Tie specific metrics to specific aspects
of performance

I
For the purposes of this talk we are focusing on label imbalance. l “ ”




PROCESS TO SIMULATE
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PROCESS TO SIMULATE
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PROCESS TO SIMULATE
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PROCESS TO SIMULATE

Classification

Algorithm
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PROCESS TO SIMULATE

Classification
Algorithm
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SIMULATION STUDY SETUP

Algorithm

Test Probabilistic

Labels ~ Ber(p)

Classification }

operations on
test data

—

Compare using metrics.
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SIMULATION SETTINGS

/Data Characteristics\

* Label types

= Common
= Moderate
= Rare
* Number of total labels

- Prevalence of labels

K- Number of instances /

-

Classifier Characteristics \

 Accuracy of each label type
« Precision and recall of rare label(s)

- Distribution of probabilities

Flat: Simulated Test Label = 1, 70% Accuracy Moderate: Simulated Test Label = 1, 70% Accuracy Extreme: Simulated Test Label =1, 70% Accuracy
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METRICS CAN VARY

Variability of Each Metric Within a Simulation Setting

© Classification/Example

© Ranking/Example © Classification/Label

© Ranking/Label
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DATASTRUCTURE IS A MAJOR SOURCE OF VARIABILITY

Variability by Selected Dataset Characteristics

Number of Instances -® 50 - 1000
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AGGREGATING ACROSS SIMULATION SETTING CLARIFIES RELATIONSHIPS

Raw Data: Hamming Loss vs Precision Aggregate Data: Hamming Loss vs Precision
Selected Settings for 'Number of Labels' Selected Settings for 'Number of Labels'
Number of Labels © 3 ® 5 ® 10 ® 100 Number of Labels ® 3 ® 5 ® 10 ® 100
10 . 1.0
.o 8
8
T
:
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0.00 0.05 0.10 0.00 0.05 0.10
Hamming Loss Hamming Loss
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HOW DO METRICS RELATE TO ONE ANOTHER?

Macro Auc

Macro Recall
Example Auc
Recall

Coverage

Macro F-measure
Macro Precision
Micro Precision
Micro F-measure
Ranking Loss
Hamming Loss
F-measure

Micro Recall
Micro Auc
Average Precision
One Error

Subset Accuracy
Precision
Accuracy

Accuracy

Precision

Subset Accuracy

One Error

Average Precision

Micro Auc
Micro Recall
F-measure

Hamming Loss

Ranking Loss
Micro F-measure

Micro Precision

Macro Precision
Macro F-measure

Coverage

Recall
Example Auc

Spearman Correlation
W 0.5

. 0.0
I -0.5
N
il

Macro Recall
Macro Auc
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HOW DO METRICS RELATE TO ONE ANOTHER?

Macro Auc

Macro Recall
Example Auc
Recall

Coverage

Macro F-measure
Macro Precision
Micro Precision
Micro F-measure
Ranking Loss
Hamming Loss
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Average Precision
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Subset Accuracy
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>
&)
©
—
3
Q
Q
<

e
S
@

[&]

g
o

>
[&]
©
—
3
Q
Q
<C
-—
(]
2]
o]
=2
(73]

—
o
=
L
o)
c
@)

Correlation =.13

S9%22%255
= S s 2 L
.9%8@33@.9.9
[&] O O
35X o o220 o
- = 0 E £ £ g~ K&
n—EalExlao-
) = L C WL o o
o o ¥ £ 2 ©
o g£=:2
<

Macro F-measure

Coverage

Recall
Example Auc

Spearman Correlation
m 0.5

. 0.0
' -0.5
=
a

Macro Recall
Macro Auc

26



HOW DO METRICS RELATE TO ONE ANOTHER?

Macro Auc
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CALCULATING PARTIAL CORRELATION

- Partial correlation quantifies the relationship
between two variables, while adjusting for
the effects of others

 To calculate partial correlation of Xand Y,
adjusting for Z:

= Regress X on Z: X = Z + residual(X)
= Regress Y on X: Y =Z + residual(Y)

= Correlate the residuals from each:;

cor[residual(X), residual(Y)]

HOW TO DETECT A CHANGE IN THE SLOPE OF YOUR DATA

NOVICE METHOD: EXPERT METHOD:

HEY LOOK, IT
BENDS HERE

;;;;;

DO A BUNCH OF STATISTICS TiP THE GRAPH SIDEWAYS

XKCD.com: Change in Slope
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APPLYING PARTIAL CORRELATION

Raw Correlation = -0.15
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RECALCULATING METRIC RELATIONSHIPS
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HIERARCHICAL CLUSTERING USING CORRELATION DISTANCE

Micro Precision

Macro F-measure
Macro Precision
Micro Recall
Micro F-measure

=T

Macro Recall

Micro Auc
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Coverage
_E Example Auc
|
0

Ranking Loss
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HIERARCHICAL CLUSTERING USING CORRELATION DISTANCE

Micro Precision

Macro F-measure
Macro Precision
Micro Recall
Micro F-measure

classification

=T

Macro Recall

Micro Auc

label Macro Auc
Coverage
Example Auc
Ranking Loss
One Error
Average Precision

ranking

example

N
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HEIRARCHICAL CLUSTERING USING CORRELATION DISTANCE

Micro Precision

=T
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Macro Precision
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RESULTS USING UNAGGREGATED DATA

recall

micro &
example

classific:

ation
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ranking

macro aggregation———
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IMPLICATIONS OF THESE RESULTS

Table 1. Statistics for each evaluation measure, adapted from Spoladretal.(2013).

Evaluation measures Number of papers
Hamming-Loss 55
Accuracy 26
F-Measure 18
Precision 18
Recall 18
Micro F-Measure 15
Macro F-Measure 12
Subset-Accuracy 10
Average Precision 10
Ranking Loss 8
Coverage 8
One Error 7
Macro Precision 5
Micro Precision 4
Subset 0(1 loss 3
Micro Recall 3
Macro Recall 2
Micro AUC 1
Macro AUC 1

Table taken from [1]
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IMPLICATIONS OF THESE RESULTS

Table 1. Statistics for each evaluation measure, adapted from Spoladretal.(2013).

Evaluation measures Number of papers
Hamming-Loss 55

Accuracy 26

FMeasure 8 These are all the same type!
Precision 18

Recall 18

Micro F-Measure 15

Macro F-Measure 12
Subset-Accuracy 10

Average Precision 10

Ranking Loss 8

Coverage 8

One Error 7

Macro Precision 5

Micro Precision 4

Subset 0(1 loss 3

Micro Recall 3

Macro Recall 2

Micro AUC 1

Macro AUC 1

Table taken from [1]
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MICRO RECALL AND IMBALANCE

Macro Recall Trend for Rare Label Performance Detection

Number of Labels :

5 © 11 @ 50 @ 101
10 ® 20 @ 100

3 @
4 @

1.0

0.

©

o
")

Macro Recall

o
~l

0.6

0.5

0.4 0.6 0.8 1.0
Balenced Accuracy of Rare Label
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MICRO RECALL AND IMBALANCE

Macro Recall Trend for Rare Label Performance Detection

Number of Labels

® 5 o 11 @ 50 @ 101
® 1

3
4 0 @ 20 @ 100

Table 1. Statistics for each evaluation measure, adapted from Spoladretal.(2013).
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[ ]
Evaluation measures Number of papers
Hamming-Loss 55
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O 9 F-Measure 18
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KEY TAKEAWAYS

» Metrics have sources of variability

= Dataset characteristics really matter

= Difficult to compare metrics between datasets

= Implication: UQ for metrics is needed to give a rounder view of performance
« Metrics are related

= The strength of those relationships depends on dataset characteristics

= They seem to fall roughly into ranking vs classification and label vs example

= Implication: for a parsimonious set one of each should be used

« When assessing sensitivity to a rare label, macro recall seems to work the best
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FUTURE WORK

Test this in real datasets with real classifiers!

Include other types of performance issues
= Correlations

= Hierarchical dependencies

Human interpretations of the metrics

UQ for metrics is a criminally underdeveloped area of research
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