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MULTI-LABEL CLASSIFICATION

Task: Identify all the animals in the pictures.
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• I want to make modeling choices that result in the 
best performing model

• “Best performing” can mean different things

• Which of the 19 metrics do you choose???

▪ Surely not all of them contain unique 
information

▪ Its not immediately clear which aspects of 
model performance they might be evaluating
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IF I’M BUILDING A MULTI-LABEL CLASSIFICATION MODEL…

XKCD.com: Goodhart’s Law



GOALS FOR EVALUATING METRICS
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Select a parsimonious set to evaluate 
performance overall

Tie specific metrics to specific aspects 
of performance

For the purposes of this talk we are focusing on label imbalance.



PROCESS TO SIMULATE

15

Population



PROCESS TO SIMULATE

16

Population

Sample



PROCESS TO SIMULATE

17

Train

Test

Population

Sample



PROCESS TO SIMULATE
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PROCESS TO SIMULATE
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SIMULATION STUDY SETUP
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Classification 
Algorithm
Probabilistic 

operations on 
test data

PredictionsTest
Labels ~ Ber(p)

Compare using metrics.



Data Characteristics

• Label types

▪ Common

▪ Moderate

▪ Rare

• Number of total labels

• Prevalence of labels

• Number of instances

Classifier Characteristics

• Accuracy of each label type

• Precision and recall of rare label(s)

• Distribution of probabilities
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SIMULATION SETTINGS



METRICS CAN VARY



DATA STRUCTURE IS A MAJOR SOURCE OF VARIABILITY
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AGGREGATING ACROSS SIMULATION SETTING CLARIFIES RELATIONSHIPS
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HOW DO METRICS RELATE TO ONE ANOTHER?
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Correlation = .13
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• Partial correlation quantifies the relationship 
between two variables, while adjusting for 
the effects of others

• To calculate partial correlation of X and Y, 
adjusting for Z:

▪ Regress X on Z: X = Z + residual(X)

▪ Regress Y on X: Y = Z + residual(Y)

▪ Correlate the residuals from each:

        cor[residual(X), residual(Y)]
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CALCULATING PARTIAL CORRELATION

XKCD.com: Change in Slope



APPLYING PARTIAL CORRELATION
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RECALCULATING METRIC RELATIONSHIPS
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HIERARCHICAL CLUSTERING USING CORRELATION DISTANCE
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HIERARCHICAL CLUSTERING USING CORRELATION DISTANCE
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RESULTS USING UNAGGREGATED DATA
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IMPLICATIONS OF THESE RESULTS

Table taken from [1]
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IMPLICATIONS OF THESE RESULTS

These are all the same type!

Table taken from [1]
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WHAT ABOUT DETECTING ASPECTS OF PERFORMANCE?



MICRO RECALL AND IMBALANCE 

38



MICRO RECALL AND IMBALANCE 
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KEY TAKEAWAYS

• Metrics have sources of variability

▪ Dataset characteristics really matter

▪ Difficult to compare metrics between datasets

▪ Implication: UQ for metrics is needed to give a rounder view of performance

• Metrics are related

▪ The strength of those relationships depends on dataset characteristics

▪ They seem to fall roughly into ranking vs classification and label vs example

▪ Implication: for a parsimonious set one of each should be used

• When assessing sensitivity to a rare label, macro recall seems to work the best
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FUTURE WORK

• Test this in real datasets with real classifiers!

• Include other types of performance issues

▪ Correlations

▪ Hierarchical dependencies

• Human interpretations of the metrics

• UQ for metrics is a criminally underdeveloped area of research
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