

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Evaluating Deterministic Models of Time Series by Comparison to Observations

Amy Braverman
Jet Propulsion Laboratory, California Institute of Technology

March 22, 2018

Joint work with Ansu Chatterjee (U of MN),
Megan Heyman (Rose-Hulman), and Noel Cressie (U of Wollongong)

National Aeronautics and
Space Administration

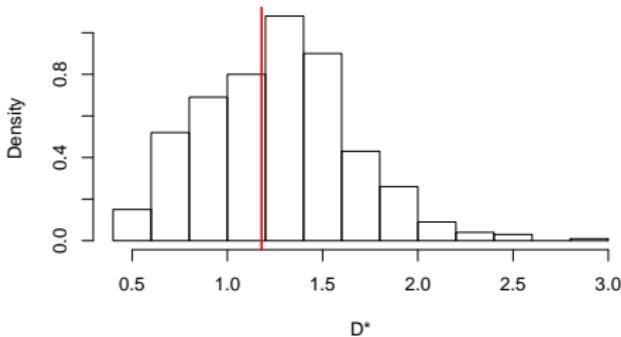
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Introduction

Idea: Given two time series, one an observed benchmark, Z , and one a target, X ,

- ▶ decompose each into a signal component and a noise component
- ▶ compute D , the distance between the benchmark and target signal series
- ▶ transform D into a probability...

- ▶ consider D to be the value of a test statistic for testing H_0 : the benchmark and the target share the same signal
- ▶ the p -value of this test is a measure of the agreement of the data with the hypothesis, H_0 (Wasserstein and Lazar, 2016)



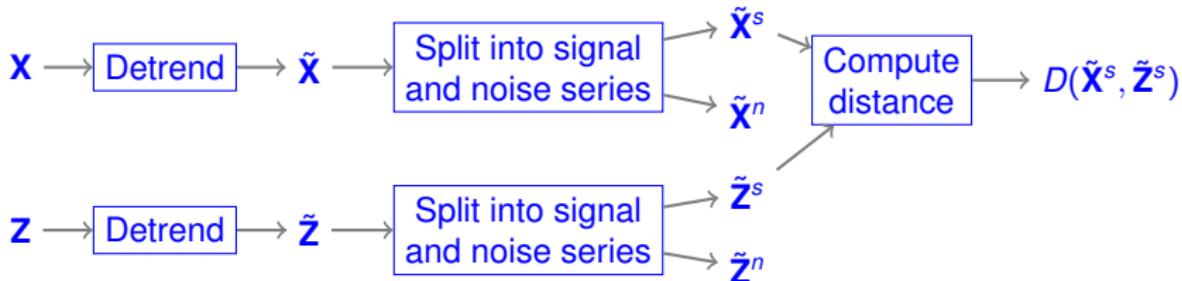
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Introduction

- ▶ *This p-value is the probability of getting a value of D at least as extreme as the one obtained from the benchmark and the target, if they really did share the same signal.*
- ▶ The main technical challenge is obtaining the sampling distribution of D under H_0 .

Statistical model and test statistic

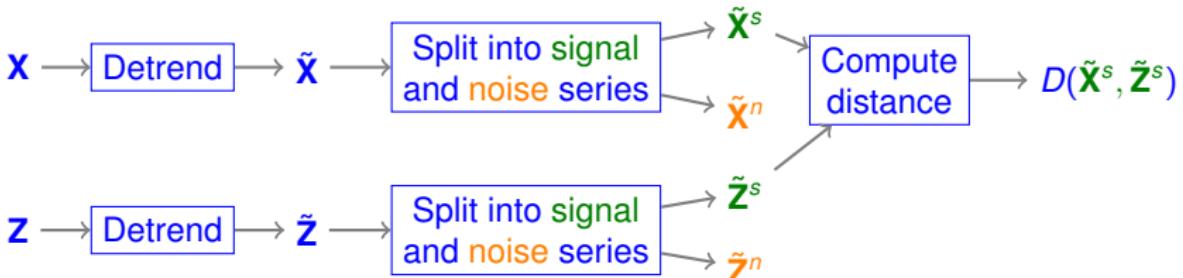


$$\mathbf{X} = (X(1), X(2), \dots, X(T))', \quad X(t) = \hat{\alpha}_X + \hat{\beta}_X t + \tilde{X}(t), \quad t = 1, \dots, T.$$

$$\mathbf{Z} = (Z(1), Z(2), \dots, Z(T))', \quad Z(t) = \hat{\alpha}_Z + \hat{\beta}_Z t + \tilde{Z}(t), \quad t = 1, \dots, T.$$

Convenient assumption here: T is an exact power of 2; $T = 2^J$.

Statistical model and test statistic

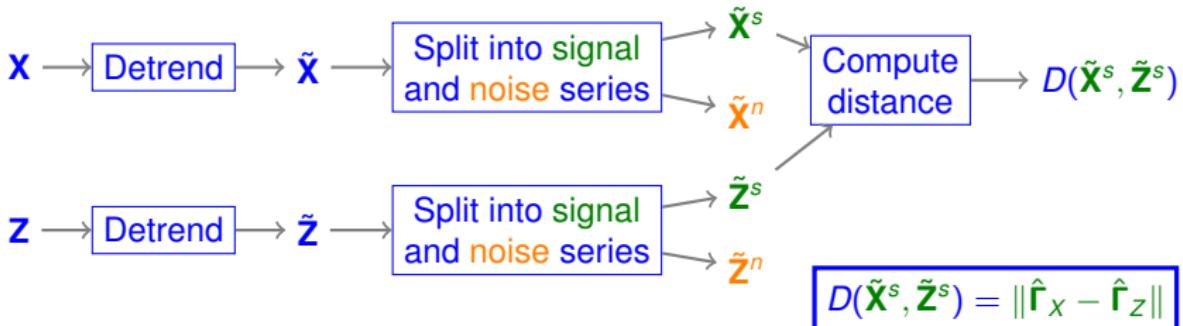


Wavelet decomposition:

$$\tilde{X}(t) = \tilde{X}^s(t) + \tilde{X}^n(t) = \sum_{j=0}^{J_0-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Xjk} W_{jk}(t/T) + \sum_{j=J_0}^{J-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Xjk} W_{jk}(t/T),$$

$$\tilde{Z}(t) = \tilde{Z}^s(t) + \tilde{Z}^n(t) = \sum_{j=0}^{J_0-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Zjk} W_{jk}(t/T) + \sum_{j=J_0}^{J-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Zjk} W_{jk}(t/T),$$

Statistical model and test statistic



Wavelet decomposition:

$$\tilde{X}^s(t) = \sum_{j=0}^{J_0-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Xjk} W_{jk}(t/T) \longrightarrow \hat{r}_X = \left(\hat{\gamma}_{X00}, \dots, \hat{\gamma}_{X(J_0-1)(2^{(J_0-1)}-1)} \right)',$$

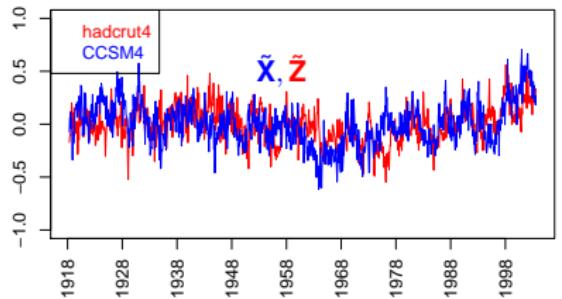
$$\tilde{Z}^s(t) = \sum_{j=0}^{J_0-1} \sum_{k=1}^{2^j-1} \hat{\gamma}_{Zjk} W_{jk}(t/T) \longrightarrow \hat{r}_Z = \left(\hat{\gamma}_{Z00}, \dots, \hat{\gamma}_{Z(J_0-1)(2^{(J_0-1)}-1)} \right)'.$$

National Aeronautics and
Space Administration

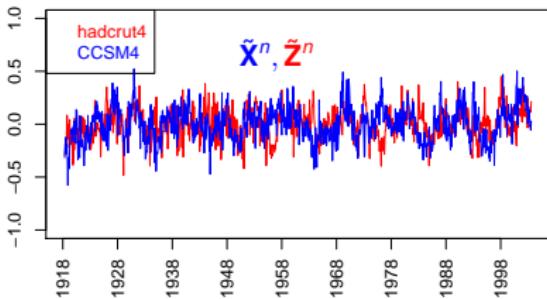
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Sampling distribution under H_0

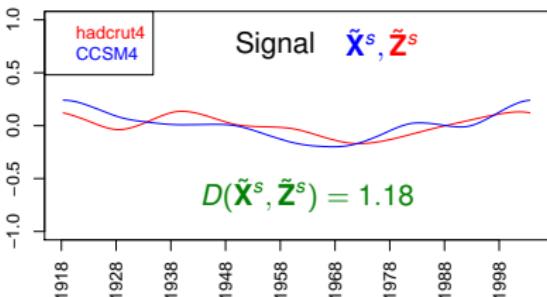
Detrended global surface temperature anomaly



Noise



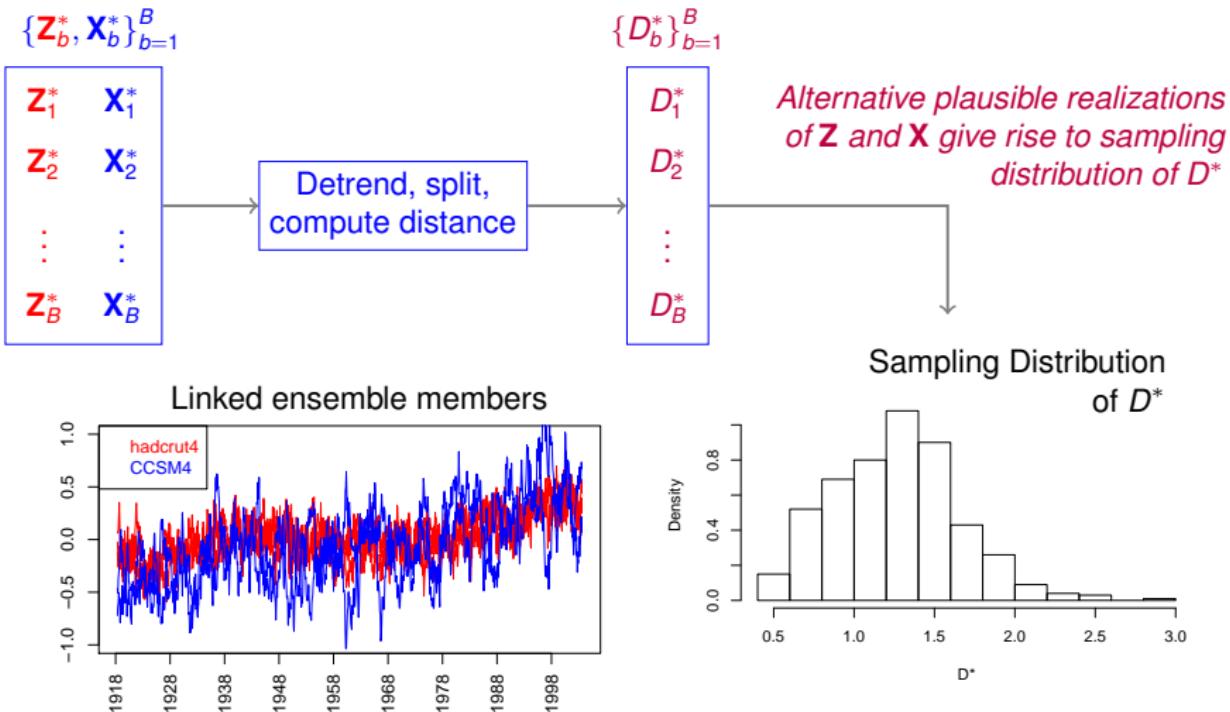
Is 1.18 large or small?



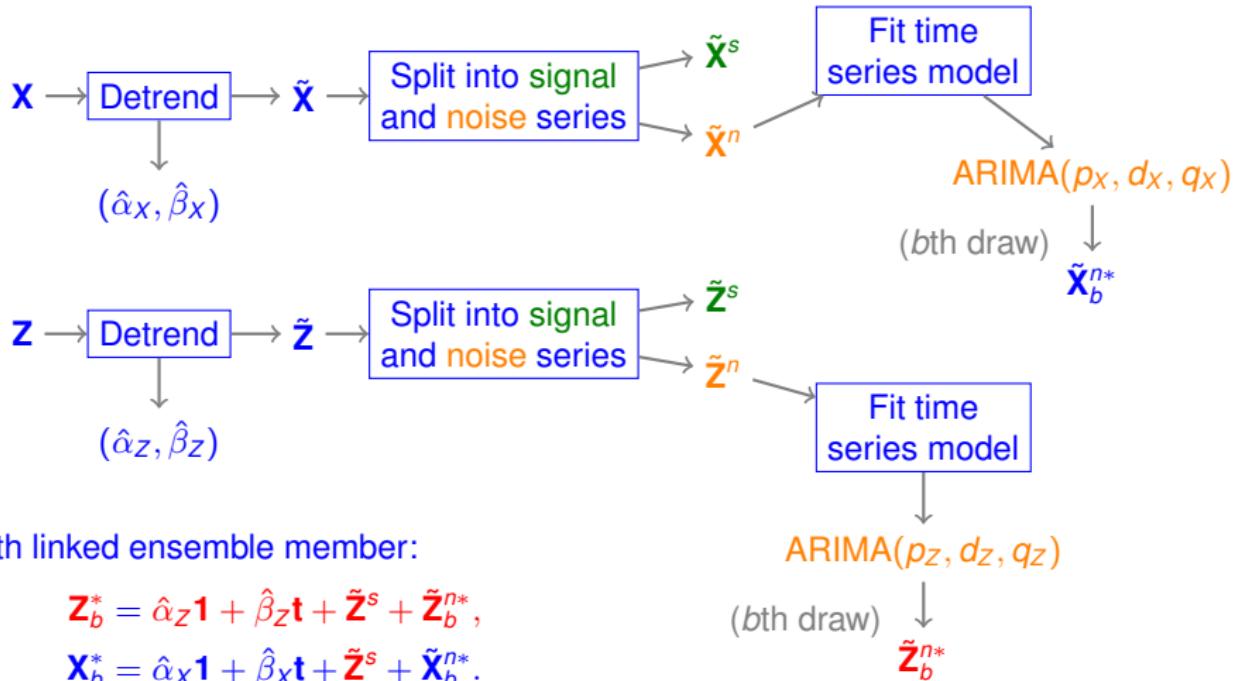
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Sampling distribution under H_0



Sampling distribution under H_0



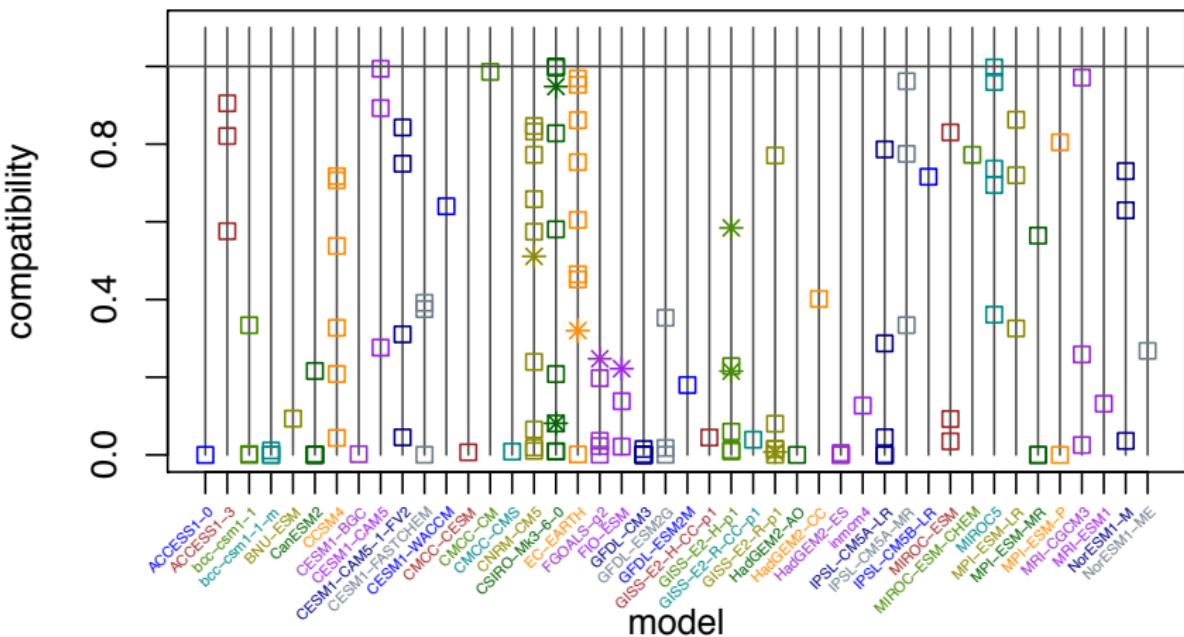
$\mathbf{1}$ = length T vector of one's; $\mathbf{t} = (1, 2, \dots, T)'$.

Application to climate models

- ▶ Observational benchmark: HadCRUT4 (Morice et al., 2012) monthly global average surface temperature anomaly, May 1918 through August 2003 (1024 months).
- ▶ Model targets: 139 model runs using 44 different models from the Coupled Model Intercomparison Project 5 (CMIP5) historical experiment, May 1918 through August 2003.
- ▶ All time series computed relative to their 1961–1990 averages.
- ▶ “Signal” defined as the coarsest three wavelet decomposition levels ($J_0 = 3$), which corresponds to approximately ten-year cycles.
- ▶ Resampling performed with $B = 5000$ trials.

Application to climate models

Model	Center	Members	Model	Center	Members
ACCESS1-0	CSIRO-BOM (Australia)	1	GFDL-ESM2M	GFDL (USA)	1
ACCESS1-3	CSIRO-BOM (Australia)	3	GISS-E2-H p1	NASA GISS (USA)	1
BCC-CSM-1	Beijing Climate Center (PRC)	3	GISS-E2-H-CC p1	NASA GISS (USA)	6
BCC-CSM-1-M	Beijing Climate Center (PRC)	3	GISS-E2-R p1	NASA GISS (USA)	1
BNU-ESM	Beijing Normal Univ. (PRC)	1	GISS-E2-R-CC p1	NASA GISS (USA)	6
CanSM2	CCCMA (Canada)	5	HadGEM2-AO	NIMR/KMA (UK/Korea)	1
CCSM4	NCAR (USA)	6	HadGEM2-CC	MOHC/INPE (UK/Brazil)	1
CESM1-BGC	NCAR/DOE/NSF (USA)	1	HadGEM2-ES	MOHC/INPE (UK/Brazil)	4
CESM1-CAM5	NCAR/DOE/NSF (USA)	3	INMCM4	INM (Russia)	1
CESM1-CAM5-1-FV2	NCAR/DOE/NSF (USA)	4	IPSL-CM5A-LR	IPSL (France)	6
CESM1-FASTCHEM	NCAR/DOE/NSF (USA)	3	IPSL-CM5A-MR	IPSL (France)	3
CESM1-WACCM	NCAR/DOE/NSF (USA)	1	IPSL-CM5B-LR	IPSL (France)	1
CMCC-CESM	CMCC (Italy)	1	MIROC-ESM	MIROC (Japan)	3
CMCC-CM	CMCC (Italy)	1	MIROC-ESM-CHEM	MIROC (Japan)	1
CMCC-CMS	CMCC (Italy)	1	MIROC5	MIROC (Japan)	5
CNRM-CM5	CNRM (France)	10	MPI-ESM-LR	MPI (Germany)	3
CSIRO-Mk3-6-0	CSIRO (Australia)	10	MPI-ESM-MR	MPI (Germany)	3
EC-EARTH	EC-EARTH Consortium (Europe)	9	MPI-ESM-P	MPI (Germany)	2
FGOALS-g2	LASG (PRC)	5	MRI-CGM3	MRI (Japan)	3
FIO-ESM	FIO (PRC)	3	MRI-ESM1	MRI (Japan)	1
GFDL-CM3	GFDL (USA)	5	NorESM1-M	NCC (Norway)	3
GFDL-ESM2G	GFDL (USA)	3	NorESM1-ME	NCC (Norway)	1



* indicates runs for which ARIMA assumptions failed.

- ▶ Nearly all models' outputs with more than one ensemble member show considerable variation.
- ▶ This is a property of their time series, particularly their noise series.
- ▶ We exploit their structures to mimic "internal variability" through resampling.
- ▶ Is this the right definition of internal variability?
- ▶ See Braverman, A., Chatterjee, S., Heyman, M., and Cressie, N.: Probabilistic evaluation of competing climate models, *Adv. Stat. Clim. Meteorol. Oceanogr.*, 3, 93-105, <https://doi.org/10.5194/ascmo-3-93-2017>, 2017.

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Question or comments? Contact Amy.Braverman@jpl.nasa.gov.

©2018 California Institute of Technology. Government sponsorship
acknowledged.