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Introduction

Idea: Given two time series, one an observed benchmark, Z, and one a target, X,

I decompose each into a signal component and a noise component

I compute D, the distance between the benchmark and target signal series

I transform D into a probability...
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Introduction

I consider D to be the value of a test statistic for testing H0 : the benchmark
and the target share the same signal

I the p-value of this test is a measure of the agreement of the data with the
hypothesis, H0 (Wasserstein and Lazar, 2016)
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Introduction

I This p-value is the probability of getting a value of D at least as extreme as
the one obtained from the benchmark and the target, if they really did
share the same signal.

I The main technical challenge is obtaining the sampling distribution of D
under H0.
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Statistical model and test statistic

X Detrend X̃
Split into signal

and noise series

X̃s

X̃n

Z Detrend Z̃
Split into signal

and noise series

Z̃s

Z̃n

Compute
distance

D(X̃s, Z̃s)

X = (X (1),X (2), . . . ,X (T ))′, X (t) = α̂X + β̂X t + X̃ (t), t = 1, . . . ,T .

Z = (Z (1),Z (2), . . . ,Z (T ))′, Z (t) = α̂Z + β̂Z t + Z̃ (t), t = 1, . . . ,T .

Convenient assumption here: T is an exact power of 2; T = 2J .
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Statistical model and test statistic

X Detrend X̃
Split into signal

and noise series

X̃s

X̃n

Z Detrend Z̃
Split into signal

and noise series

Z̃s

Z̃n

Compute
distance

D(X̃s, Z̃s)

Wavelet decomposition:

X̃ (t) = X̃ s(t) + X̃ n(t) =
J0−1∑
j=0

2j−1∑
k=1

γ̂Xjk Wjk (t/T ) +
J−1∑
j=J0

2j−1∑
k=1

γ̂Xjk Wjk (t/T ),

Z̃ (t) = Z̃ s(t) + Z̃ n(t) =
J0−1∑
j=0

2j−1∑
k=1

γ̂Zjk Wjk (t/T ) +
J−1∑
j=J0

2j−1∑
k=1

γ̂Zjk Wjk (t/T ),
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Statistical model and test statistic

X Detrend X̃
Split into signal

and noise series

X̃s

X̃n

Z Detrend Z̃
Split into signal

and noise series

Z̃s

Z̃n

Compute
distance

D(X̃s, Z̃s)

D(X̃s, Z̃s) = ‖Γ̂X − Γ̂Z‖

Wavelet decomposition:

X̃ s(t) =
J0−1∑
j=0

2j−1∑
k=1

γ̂Xjk Wjk (t/T ) −→ Γ̂X =
(
γ̂X00, . . . , γ̂X(J0−1)(2(J0−1)−1)

)′
,

Z̃ s(t) =
J0−1∑
j=0

2j−1∑
k=1

γ̂Zjk Wjk (t/T ) −→ Γ̂Z =
(
γ̂Z00, . . . , γ̂Z (J0−1)(2(J0−1)−1)

)′
.
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Sampling distribution under H0
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Detrended global surface temperature anomaly

X̃, Z̃

Noise

X̃n, Z̃n

Signal X̃s, Z̃s

D(X̃s, Z̃s) = 1.18

Is 1.18 large or small?
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Sampling distribution under H0

Z∗1 X∗1

Z∗2 X∗2

...
...

Z∗B X∗B

Detrend, split,
compute distance

D∗1

D∗2

...

D∗B

{Z∗b ,X∗b}
B
b=1 {D∗b}

B
b=1

D*

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

Sampling Distribution
of D∗
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Linked ensemble members

Alternative plausible realizations
of Z and X give rise to sampling

distribution of D∗
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Sampling distribution under H0

X Detrend X̃
Split into signal

and noise series

X̃s

X̃n

Z Detrend Z̃
Split into signal

and noise series

Z̃s

Z̃n

Fit time
series model

Fit time
series model

ARIMA(pX , dX , qX )

ARIMA(pZ , dZ , qZ )

X̃n∗
b

Z̃n∗
b

(α̂X , β̂X )

(α̂Z , β̂Z )

bth linked ensemble member:

Z∗b = α̂Z 1 + β̂Z t + Z̃s + Z̃n∗
b ,

X∗b = α̂X 1 + β̂X t+ Z̃s + X̃n∗
b .

1 = length T vector of one’s; t = (1, 2, . . . ,T )′.

(bth draw)

(bth draw)
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Application to climate models

I Observational benchmark: HadCRUT4 (Morice et al., 2012) monthly global
average surface temperature anomaly, May 1918 through August 2003
(1024 months).

I Model targets: 139 model runs using 44 different models from the Coupled
Model Intercomparison Project 5 (CMIP5) historical experiment, May 1918
through August 2003.

I All time series computed relative to their 1961–1990 averages.

I “Signal" defined as the coarsest three wavelet decomposition levels
(J0 = 3), which corresponds to approximately ten-year cycles.

I Resampling performed with B = 5000 trials.
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Application to climate models

Model Center Members Model Center Members

ACCESS1-0 CSIRO-BOM (Australia) 1 GFDL-ESM2M GFDL (USA) 1

ACCESS1-3 CSIRO-BOM (Australia) 3 GISS-E2-H p1 NASA GISS (USA) 1

BCC-CSM-1 Beijing Climate Center (PRC) 3 GISS-E2-H-CC p1 NASA GISS (USA) 6

BCC-CSM-1-M Beijing Climate Center (PRC) 3 GISS-E2-R p1 NASA GISS (USA) 1

BNU-ESM Beijing Normal Univ. (PRC) 1 GISS-E2-R-CC p1 NASA GISS (USA) 6

CanSM2 CCCMA (Canada) 5 HadGEM2-AO NIMR/KMA (UK/Korea) 1

CCSM4 NCAR (USA) 6 HadGEM2-CC MOHC/INPE (UK/Brazil) 1

CESM1-BGC NCAR/DOE/NSF (USA) 1 HadGEM2-ES MOHC/INPE (UK/Brazil) 4

CESM1-CAM5 NCAR/DOE/NSF (USA) 3 INMCM4 INM (Russia) 1

CESM1-CAM5-1-FV2 NCAR/DOE/NSF (USA) 4 IPSL-CM5A-LR IPSL (France) 6

CESM1-FASTCHEM NCAR/DOE/NSF (USA) 3 IPSL-CM5A-MR IPSL (France) 3

CESM1-WACCM NCAR/DOE/NSF (USA) 1 IPSL-CM5B-LR IPSL (France) 1

CMCC-CESM CMCC (Italy) 1 MIROC-ESM MIROC (Japan) 3

CMCC-CM CMCC (Italy) 1 MIROC-ESM-CHEM MIROC (Japan) 1

CMCC-CMS CMCC (Italy) 1 MIROC5 MIROC (Japan) 5

CNRM-CM5 CNRM (France) 10 MPI-ESM-LR MPI (Germany) 3

CSIRO-Mk3-6-0 CSIRO (Australia) 10 MPI-ESM-MR MPI (Germany) 3

EC-EARTH EC-EARTH Consortium (Europe) 9 MPI-ESM-P MPI (Germany) 2

FGOALS-g2 LASG (PRC) 5 MRI-CGM3 MRI (Japan) 3

FIO-ESM FIO (PRC) 3 MRI-ESM1 MRI (Japan) 1

GFDL-CM3 GFDL (USA) 5 NorESM1-M NCC (Norway) 3

GFDL-ESM2G GFDL (USA) 3 NorESM1-ME NCC (Norway) 1
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Results
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Discussion

I Nearly all models’ outputs with more than one ensemble member show
considerable variation.

I This is a property of their time series, particularly their noise series.

I We exploit their structures to mimic “internal variability" through
resampling.

I Is this the right definition of internal variability?

I See Braverman, A., Chatterjee, S., Heyman, M., and Cressie, N.:
Probabilistic evaluation of competing climate models, Adv. Stat. Clim.
Meteorol. Oceanogr., 3, 93-105, https://doi.org/10.5194/ascmo-3-93-2017,
2017.
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Question or comments? Contact Amy.Braverman@jpl.nasa.gov.
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