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Idea: Given two time series, one an observed benchmark, Z, and one a target, X,

» decompose each into a signal component and a noise component
» compute D, the distance between the benchmark and target signal series

» transform D into a probability...
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» consider D to be the value of a test statistic for testing H, : the benchmark
and the target share the same signal

» the p-value of this test is a measure of the agreement of the data with the
hypothesis, Hy (Wasserstein and Lazar, 2016)
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» This p-value is the probability of getting a value of D at least as extreme as
the one obtained from the benchmark and the target, if they really did
share the same signal.

» The main technical challenge is obtaining the sampling distribution of D
under Hp.



Statistical model and test statistic
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X = (X(1),X(2),...,X(T)), X(t)=ax+pBxt+X(t), t=1,...,T.

Z=(2(1),2(2),...,2(T)), Z(t)=az+ Bzt +2(t), t=1,...,T.

Convenient assumption here: T is an exact power of 2; T = 2.
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Detrended global surface temperature anomaly
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Sampling distribution under Hj
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Sampling distribution under Hy
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Application to climate models

Observational benchmark: HadCRUT4 (Morice et al., 2012) monthly global
average surface temperature anomaly, May 1918 through August 2003
(1024 months).

Model targets: 139 model runs using 44 different models from the Coupled
Model Intercomparison Project 5 (CMIP5) historical experiment, May 1918
through August 2003.

All time series computed relative to their 1961-1990 averages.

“Signal" defined as the coarsest three wavelet decomposition levels
(Jo = 8), which corresponds to approximately ten-year cycles.

Resampling performed with B = 5000 trials.
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Model Center Members || Model Center Members
ACCESS1-0 CSIRO-BOM (Australia) 1 GFDL-ESM2M GFDL (USA) 1
ACCESS1-3 CSIRO-BOM (Australia) 3 GISS-E2-H p1 NASA GISS (USA) 1
BCC-CSM-1 Beijing Climate Center (PRC) 3 GISS-E2-H-CC p1 NASA GISS (USA) 6
BCC-CSM-1-M Beijing Climate Center (PRC) 3 GISS-E2-R pt NASA GISS (USA) 1
BNU-ESM Beijing Normal Univ. (PRC) 1 GISS-E2-R-CC p1 NASA GISS (USA) 6
CanSM2 CCCMA (Canada) 5 HadGEM2-AO NIMR/KMA (UK/Korea) 1
CCsm4 NCAR (USA) 6 HadGEM2-CC MOHC/INPE (UK/Brazil) 1
CESM1-BGC NCAR/DOE/NSF (USA) 1 HadGEM2-ES MOHC/INPE (UK/Brazil) 4
CESM1-CAM5 NCAR/DOE/NSF (USA) 3 INMCM4 INM (Russia) 1
CESM1-CAM5-1-FV2 | NCAR/DOE/NSF (USA) 4 IPSL-CM5A-LR IPSL (France) 6
CESM1-FASTCHEM NCAR/DOE/NSF (USA) 3 IPSL-CM5A-MR IPSL (France) 3
CESM1-WACCM NCAR/DOE/NSF (USA) 1 IPSL-CM5B-LR IPSL (France) 1
CMCC-CESM CMCC (ltaly) 1 MIROC-ESM MIROC (Japan) 3
CMCC-CM CMCC (ltaly) 1 MIROC-ESM-CHEM | MIROC (Japan) 1
CMCC-CMS CMCC (ltaly) 1 MIROC5 MIROC (Japan) 5
CNRM-CM5 CNRM (France) 10 MPI-ESM-LR MPI (Germany) 3
CSIRO-MK3-6-0 CSIRO (Australia) 10 MPI-ESM-MR MPI (Germany) 3
EC-EARTH EC-EARTH Consortium (Europe) 9 MPI-ESM-P MPI (Germany) 2
FGOALS-g2 LASG (PRC) 5 MRI-CGM3 MRI (Japan) 3
FIO-ESM FIO (PRC) 3 MRI-ESM1 MRI (Japan) 1
GFDL-CM3 GFDL (USA) 5 NorESM1-M NCC (Norway) 3
GFDL-ESM2G GFDL (USA) 3 NorESM1-ME NCC (Norway) 1
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» Nearly all models’ outputs with more than one ensemble member show
considerable variation.

» This is a property of their time series, particularly their noise series.

» We exploit their structures to mimic “internal variability" through
resampling.

» s this the right definition of internal variability?

» See Braverman, A., Chatterjee, S., Heyman, M., and Cressie, N.:
Probabilistic evaluation of competing climate models, Adv. Stat. Clim.
Meteorol. Oceanogr., 3, 93-105, hitps://doi.org/10.5194/ascmo-3-93-2017,
2017.



National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Califomia

Question or comments? Contact Amy.Braverman@jpl.nasa.gov.
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